Library MetaCoq.PCUIC.PCUICParallelReductionConfluence
From Coq Require CMorphisms.
From MetaCoq.Template Require Import config utils.
From MetaCoq.PCUIC Require Import PCUICAst PCUICOnOne PCUICAstUtils PCUICTactics PCUICSize PCUICLiftSubst
PCUICSigmaCalculus PCUICUnivSubst PCUICTyping PCUICReduction
PCUICReflect PCUICInduction PCUICClosed PCUICClosedConv PCUICClosedTyp PCUICDepth PCUICOnFreeVars
PCUICRenameDef PCUICRenameConv PCUICInstDef PCUICInstConv PCUICWeakeningConv PCUICWeakeningTyp
PCUICViews PCUICParallelReduction.
Require Import ssreflect ssrbool.
Require Import Morphisms CRelationClasses.
From Equations Require Import Equations.
Add Search Blacklist "pred1_rect".
Add Search Blacklist "_equation_".
Local Open Scope sigma_scope.
Local Set Keyed Unification.
Ltac solve_discr := (try (progress (prepare_discr; finish_discr; cbn [mkApps] in × )));
try discriminate.
Section FoldFix.
Context (rho : context → term → term).
Context (Γ : context).
Fixpoint fold_fix_context acc m :=
match m with
| [] ⇒ acc
| def :: fixd ⇒
fold_fix_context (vass def.(dname) (lift0 #|acc| (rho Γ def.(dtype))) :: acc) fixd
end.
End FoldFix.
Lemma fold_fix_context_length f Γ l m : #|fold_fix_context f Γ l m| = #|m| + #|l|.
Proof.
induction m in l |- *; simpl; auto. rewrite IHm. simpl. auto with arith.
Qed.
Lemma fix_context_gen_assumption_context k Γ : assumption_context (fix_context_gen k Γ).
Proof.
rewrite /fix_context_gen. revert k.
induction Γ using rev_ind.
constructor. intros.
rewrite mapi_rec_app /= List.rev_app_distr /=. constructor.
apply IHΓ.
Qed.
Lemma fix_context_assumption_context m : assumption_context (fix_context m).
Proof. apply fix_context_gen_assumption_context. Qed.
Lemma nth_error_assumption_context Γ n d :
assumption_context Γ → nth_error Γ n = Some d →
decl_body d = None.
Proof.
intros H; induction H in n, d |- × ; destruct n; simpl; try congruence; eauto.
now move⇒ [<-] //.
Qed.
Lemma atom_mkApps {t l} : atom (mkApps t l) → atom t ∧ l = [].
Proof.
induction l in t |- *; simpl; auto.
intros. destruct (IHl _ H). discriminate.
Qed.
Lemma pred_atom_mkApps {t l} : pred_atom (mkApps t l) → pred_atom t ∧ l = [].
Proof.
induction l in t |- *; simpl; auto.
intros. destruct (IHl _ H). discriminate.
Qed.
Ltac finish_discr :=
repeat PCUICAstUtils.finish_discr ||
match goal with
| [ H : atom (mkApps _ _) |- _ ] ⇒ apply atom_mkApps in H; intuition subst
| [ H : pred_atom (mkApps _ _) |- _ ] ⇒ apply pred_atom_mkApps in H; intuition subst
end.
Ltac solve_discr ::=
(try (progress (prepare_discr; finish_discr; cbn [mkApps] in × )));
(try (match goal with
| [ H : is_true (atom _) |- _ ] ⇒ discriminate
| [ H : is_true (atom (mkApps _ _)) |- _ ] ⇒ destruct (atom_mkApps H); subst; try discriminate
| [ H : is_true (pred_atom _) |- _ ] ⇒ discriminate
| [ H : is_true (pred_atom (mkApps _ _)) |- _ ] ⇒ destruct (pred_atom_mkApps H); subst; try discriminate
end)).
Section Pred1_inversion.
Lemma pred_snd_nth:
∀ (Σ : global_env) (Γ Δ : context) (c : nat) (brs1 brs' : list (nat × term)),
All2
(on_Trel (pred1 Σ Γ Δ) snd) brs1
brs' →
pred1_ctx Σ Γ Δ →
pred1 Σ Γ Δ
(snd (nth c brs1 (0, tDummy)))
(snd (nth c brs' (0, tDummy))).
Proof.
intros Σ Γ Δ c brs1 brs' brsl. intros.
induction brsl in c |- *; simpl. destruct c; now apply pred1_refl_gen.
destruct c; auto.
Qed.
Lemma pred_mkApps Σ Γ Δ M0 M1 N0 N1 :
pred1 Σ Γ Δ M0 M1 →
All2 (pred1 Σ Γ Δ) N0 N1 →
pred1 Σ Γ Δ (mkApps M0 N0) (mkApps M1 N1).
Proof.
intros.
induction X0 in M0, M1, X |- ×. auto.
simpl. eapply IHX0. now eapply pred_app.
Qed.
Lemma pred1_mkApps_tConstruct (Σ : global_env) (Γ Δ : context)
ind pars k (args : list term) c :
pred1 Σ Γ Δ (mkApps (tConstruct ind pars k) args) c →
{args' : list term & (c = mkApps (tConstruct ind pars k) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
depelim X... ∃ []. intuition auto.
intros. rewrite mkApps_app in X.
depelim X...
prepare_discr. apply mkApps_eq_decompose_app in H.
rewrite !decompose_app_rec_mkApps in H. noconf H.
destruct (IHargs _ X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Lemma pred1_mkApps_refl_tConstruct (Σ : global_env) Γ Δ i k u l l' :
pred1 Σ Γ Δ (mkApps (tConstruct i k u) l) (mkApps (tConstruct i k u) l') →
All2 (pred1 Σ Γ Δ) l l'.
Proof.
intros.
eapply pred1_mkApps_tConstruct in X. destruct X.
destruct p. now eapply mkApps_eq_inj in e as [_ <-].
Qed.
Lemma pred1_mkApps_tInd (Σ : global_env) (Γ Δ : context)
ind u (args : list term) c :
pred1 Σ Γ Δ (mkApps (tInd ind u) args) c →
{args' : list term & (c = mkApps (tInd ind u) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
depelim X... ∃ []. intuition auto.
intros. rewrite mkApps_app in X.
depelim X... simpl in H; noconf H. solve_discr.
prepare_discr. apply mkApps_eq_decompose_app in H.
rewrite !decompose_app_rec_mkApps in H. noconf H.
destruct (IHargs _ X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Derive NoConfusion for PCUICEnvironment.global_decl.
Lemma pred1_mkApps_tRel (Σ : global_env) (Γ Δ : context) k b (args : list term) c :
nth_error Γ k = Some b → decl_body b = None →
pred1 Σ Γ Δ (mkApps (tRel k) args) c →
{args' : list term & (c = mkApps (tRel k) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
- depelim X...
× ∃ []. intuition auto.
eapply nth_error_pred1_ctx in a; eauto.
destruct a as [body' [eqopt _]]. rewrite H /= H0 in eqopt. discriminate.
× ∃ []; intuition auto.
- rewrite mkApps_app /= in X.
depelim X; try (simpl in H1; noconf H1); solve_discr.
× prepare_discr. apply mkApps_eq_decompose_app in H1.
rewrite !decompose_app_rec_mkApps in H1. noconf H1.
× destruct (IHargs _ H H0 X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Lemma pred1_mkApps_tConst_axiom (Σ : global_env) (Γ Δ : context)
cst u (args : list term) cb c :
declared_constant Σ cst cb → cst_body cb = None →
pred1 Σ Γ Δ (mkApps (tConst cst u) args) c →
{args' : list term & (c = mkApps (tConst cst u) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
depelim X...
- red in H, isdecl. rewrite isdecl in H; noconf H.
congruence.
- ∃ []. intuition auto.
- rewrite mkApps_app in X.
depelim X...
× prepare_discr. apply mkApps_eq_decompose_app in H1.
rewrite !decompose_app_rec_mkApps in H1. noconf H1.
× destruct (IHargs _ H H0 X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Lemma pred1_mkApps_tFix_inv Σ (Γ Δ : context)
mfix0 idx (args0 : list term) c d :
nth_error mfix0 idx = Some d →
~~ is_constructor (rarg d) args0 →
pred1 Σ Γ Δ (mkApps (tFix mfix0 idx) args0) c →
({ mfix1 & { args1 : list term &
(c = mkApps (tFix mfix1 idx) args1) ×
All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1)
dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ) ) args0 args1 } }%type).
Proof with solve_discr.
intros hnth isc pred. remember (mkApps _ _) as fixt.
revert mfix0 idx args0 Heqfixt hnth isc.
induction pred; intros; solve_discr.
- unfold unfold_fix in e.
red in a1.
eapply All2_nth_error_Some in a1; eauto.
destruct a1 as [t' [ht' [hds [hr [= eqna eqrarg]]]]].
rewrite ht' in e ⇒ //. noconf e. rewrite -eqrarg in e0.
rewrite e0 in isc ⇒ //.
- destruct args0 using rev_ind. noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
clear IHpred2. specialize (IHpred1 _ _ _ eq_refl).
specialize (IHpred1 hnth). apply is_constructor_prefix in isc.
specialize (IHpred1 isc).
destruct IHpred1 as [? [? [[? ?] ?]]].
eexists _. eexists (_ ++ [N1]). rewrite mkApps_app.
intuition eauto. simpl. subst M1. reflexivity.
eapply All2_app; eauto.
- ∃ mfix1, []. intuition auto.
- subst t. solve_discr.
Qed.
Lemma pred1_mkApps_tFix_refl_inv (Σ : global_env) (Γ Δ : context)
mfix0 mfix1 idx0 idx1 (args0 args1 : list term) d :
nth_error mfix0 idx0 = Some d →
is_constructor (rarg d) args0 = false →
pred1 Σ Γ Δ (mkApps (tFix mfix0 idx0) args0) (mkApps (tFix mfix1 idx1) args1) →
(All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1)
dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ) ) args0 args1).
Proof with solve_discr.
intros Hnth Hisc.
remember (mkApps _ _) as fixt.
remember (mkApps _ args1) as fixt'.
intros pred. revert mfix0 mfix1 idx0 args0 d Hnth Hisc idx1 args1 Heqfixt Heqfixt'.
induction pred; intros; solve_discr.
-
red in a1. eapply All2_nth_error_Some in a1; eauto.
destruct a1 as [t' [Hnth' [Hty [Hpred Hann]]]].
unfold unfold_fix in e. destruct (nth_error mfix1 idx) eqn:hfix1.
noconf e. noconf Hnth'.
move: Hann ⇒ [=] Hname Hrarg.
all:congruence.
- destruct args0 using rev_ind; noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
destruct args1 using rev_ind; noconf Heqfixt'. clear IHargs1.
rewrite mkApps_app in Heqfixt'. noconf Heqfixt'.
clear IHpred2.
assert (is_constructor (rarg d) args0 = false).
{ move: Hisc. rewrite /is_constructor.
elim: nth_error_spec. rewrite app_length.
move⇒ i hi harg. elim: nth_error_spec.
move⇒ i' hi' hrarg'.
rewrite nth_error_app_lt in hi; eauto. congruence.
auto.
rewrite app_length. move⇒ ge _.
elim: nth_error_spec; intros; try lia; auto.
}
specialize (IHpred1 _ _ _ _ _ Hnth H _ _ eq_refl eq_refl).
destruct IHpred1 as [? ?]. red in a.
unfold All2_prop2_eq. split. apply a. apply All2_app; auto.
- constructor; auto.
- subst. solve_discr.
Qed.
Lemma pred1_mkApps_tCoFix_inv (Σ : global_env) (Γ Δ : context)
mfix0 idx (args0 : list term) c :
pred1 Σ Γ Δ (mkApps (tCoFix mfix0 idx) args0) c →
∑ mfix1 args1,
(c = mkApps (tCoFix mfix1 idx) args1) ×
All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1) dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ) ) args0 args1.
Proof with solve_discr.
intros pred. remember (mkApps _ _) as fixt. revert mfix0 idx args0 Heqfixt.
induction pred; intros; solve_discr.
- destruct args0 using rev_ind. noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
clear IHpred2. specialize (IHpred1 _ _ _ eq_refl).
destruct IHpred1 as [? [? [[-> ?] ?]]].
eexists x, (x0 ++ [N1]). intuition auto.
now rewrite mkApps_app.
eapply All2_app; eauto.
- ∃ mfix1, []; intuition (simpl; auto).
- subst t; solve_discr.
Qed.
Lemma pred1_mkApps_tCoFix_refl_inv (Σ : global_env) (Γ Δ : context)
mfix0 mfix1 idx (args0 args1 : list term) :
pred1 Σ Γ Δ (mkApps (tCoFix mfix0 idx) args0) (mkApps (tCoFix mfix1 idx) args1) →
All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1) dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ)) args0 args1.
Proof with solve_discr.
intros pred. remember (mkApps _ _) as fixt.
remember (mkApps _ args1) as fixt'.
revert mfix0 mfix1 idx args0 args1 Heqfixt Heqfixt'.
induction pred; intros; symmetry in Heqfixt; solve_discr.
- destruct args0 using rev_ind. noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
clear IHpred2.
symmetry in Heqfixt'.
destruct args1 using rev_ind. discriminate. rewrite mkApps_app in Heqfixt'.
noconf Heqfixt'.
destruct (IHpred1 _ _ _ _ _ eq_refl eq_refl) as [H H'].
unfold All2_prop2_eq. split. apply H. apply All2_app; auto.
- repeat finish_discr.
unfold All2_prop2_eq. intuition (simpl; auto).
- subst t; solve_discr.
Qed.
End Pred1_inversion.
#[global]
Hint Constructors pred1 : pcuic.
Notation predicate_depth := (predicate_depth_gen depth).
Notation fold_context_term f := (fold_context (fun Γ' ⇒ map_decl (f Γ'))).
Section Rho.
Context {cf : checker_flags}.
Context (Σ : global_env).
Context (wfΣ : wf Σ).
#[program] Definition map_fix_rho {t} (rho : context → ∀ x, depth x < depth t → term) Γ mfixctx (mfix : mfixpoint term)
(H : mfixpoint_depth mfix < depth t) :=
(map_In mfix (fun d (H : In d mfix) ⇒ {| dname := dname d;
dtype := rho Γ (dtype d) _;
dbody := rho (Γ ,,, mfixctx) (dbody d) _; rarg := (rarg d) |})).
Next Obligation.
eapply (In_list_depth (def_depth_gen depth)) in H.
eapply Nat.le_lt_trans with (def_depth_gen depth d).
unfold def_depth_gen. lia.
unfold mfixpoint_depth in H0.
lia.
Qed.
Next Obligation.
eapply (In_list_depth (def_depth_gen depth)) in H.
eapply Nat.le_lt_trans with (def_depth_gen depth d).
unfold def_depth_gen. lia.
unfold mfixpoint_depth in H0.
lia.
Qed.
Equations? fold_fix_context_wf mfix
(rho : context → ∀ x, depth x ≤ (mfixpoint_depth mfix) → term)
(Γ acc : context) : context :=
fold_fix_context_wf [] rho Γ acc ⇒ acc ;
fold_fix_context_wf (d :: mfix) rho Γ acc ⇒
fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x _) Γ (vass (dname d) (lift0 #|acc| (rho Γ (dtype d) _)) :: acc).
Proof.
lia. unfold def_depth_gen. lia.
Qed.
Transparent fold_fix_context_wf.
#[program] Definition map_terms {t} (rho : context → ∀ x, depth x < depth t → term) Γ (l : list term)
(H : list_depth_gen depth l < depth t) :=
(map_In l (fun t (H : In t l) ⇒ rho Γ t _)).
Next Obligation.
eapply (In_list_depth depth) in H. lia.
Qed.
Section rho_ctx.
Context (Γ : context).
Context (rho : context → ∀ x, depth x ≤ context_depth Γ → term).
Program Definition rho_ctx_over_wf :=
fold_context_In Γ (fun Γ' d hin ⇒
match d with
| {| decl_name := na; decl_body := None; decl_type := T |} ⇒
vass na (rho Γ' T _)
| {| decl_name := na; decl_body := Some b; decl_type := T |} ⇒
vdef na (rho Γ' b _) (rho Γ' T _)
end).
Next Obligation.
eapply (In_list_depth (decl_depth_gen depth)) in hin.
unfold decl_depth_gen at 1 in hin. simpl in ×. unfold context_depth. lia.
Qed.
Next Obligation.
eapply (In_list_depth (decl_depth_gen depth)) in hin.
unfold decl_depth_gen at 1 in hin. simpl in ×. unfold context_depth. lia.
Qed.
Next Obligation.
eapply (In_list_depth (decl_depth_gen depth)) in hin.
unfold decl_depth_gen at 1 in hin. simpl in ×. unfold context_depth. lia.
Qed.
End rho_ctx.
Lemma rho_ctx_over_wf_eq (rho : context → term → term) (Γ : context) :
rho_ctx_over_wf Γ (fun Γ x hin ⇒ rho Γ x) =
fold_context_term rho Γ.
Proof using Type.
rewrite /rho_ctx_over_wf fold_context_In_spec.
apply fold_context_Proper. intros n x.
now destruct x as [na [b|] ty]; simpl.
Qed.
Hint Rewrite rho_ctx_over_wf_eq : rho.
#[program]
Definition map_br_wf {t} (rho : context → ∀ x, depth x < depth t → term)
Γ (p : PCUICAst.predicate term)
(br : branch term) (H : depth (bbody br) < depth t) :=
let bcontext' := inst_case_branch_context p br in
{| bcontext := br.(bcontext);
bbody := rho (Γ ,,, bcontext') br.(bbody) _ |}.
Definition map_br_gen (rho : context → term → term) Γ p (br : branch term) :=
let bcontext' := inst_case_branch_context p br in
{| bcontext := br.(bcontext);
bbody := rho (Γ ,,, bcontext') br.(bbody) |}.
Lemma map_br_map (rho : context → term → term) t Γ p l H :
@map_br_wf t (fun Γ x Hx ⇒ rho Γ x) Γ p l H = map_br_gen rho Γ p l.
Proof using Type.
unfold map_br_wf, map_br_gen. now f_equal; autorewrite with rho.
Qed.
Hint Rewrite map_br_map : rho.
#[program] Definition map_brs_wf {t} (rho : context → ∀ x, depth x < depth t → term) Γ
p (l : list (branch term))
(H : list_depth_gen (depth ∘ bbody) l < depth t) :=
map_In l (fun br (H : In br l) ⇒ map_br_wf rho Γ p br _).
Next Obligation.
eapply (In_list_depth (depth ∘ bbody)) in H. lia.
Qed.
Lemma map_brs_map (rho : context → term → term) t Γ p l H :
@map_brs_wf t (fun Γ x Hx ⇒ rho Γ x) Γ p l H = map (map_br_gen rho Γ p) l.
Proof using Type.
unfold map_brs_wf, map_br_wf. rewrite map_In_spec.
apply map_ext ⇒ x. now autorewrite with rho.
Qed.
Hint Rewrite map_brs_map : rho.
#[program] Definition rho_predicate_wf {t} (rho : context → ∀ x, depth x < depth t → term) Γ
(p : PCUICAst.predicate term) (H : predicate_depth p < depth t) :=
let params' := map_terms rho Γ p.(pparams) _ in
let pcontext' := inst_case_context params' p.(puinst) p.(pcontext) in
{| pparams := params';
puinst := p.(puinst) ;
pcontext := p.(pcontext) ;
preturn := rho (Γ ,,, pcontext') p.(preturn) _ |}.
Next Obligation.
pose proof (context_depth_inst_case_context p.(pparams) p.(puinst) p.(pcontext)).
rewrite /predicate_depth in H. lia.
Qed.
Next Obligation.
rewrite /predicate_depth in H. lia.
Qed.
Definition rho_predicate_gen (rho : context → term → term) Γ
(p : PCUICAst.predicate term) :=
let params' := map (rho Γ) p.(pparams) in
let pcontext' := inst_case_context params' p.(puinst) p.(pcontext) in
{| pparams := params';
puinst := p.(puinst) ;
pcontext := p.(pcontext) ;
preturn := rho (Γ ,,, pcontext') p.(preturn) |}.
Lemma map_terms_map (rho : context → term → term) t Γ l H :
@map_terms t (fun Γ x Hx ⇒ rho Γ x) Γ l H = map (rho Γ) l.
Proof using Type.
unfold map_terms. now rewrite map_In_spec.
Qed.
Hint Rewrite map_terms_map : rho.
Lemma rho_predicate_map_predicate {t} (rho : context → term → term) Γ p (H : predicate_depth p < depth t) :
rho_predicate_wf (fun Γ x H ⇒ rho Γ x) Γ p H =
rho_predicate_gen rho Γ p.
Proof using Type.
rewrite /rho_predicate_gen /rho_predicate_wf.
f_equal; simp rho ⇒ //.
Qed.
Hint Rewrite @rho_predicate_map_predicate : rho.
Definition inspect {A} (x : A) : { y : A | x = y } := exist x eq_refl.
Arguments Nat.max : simpl never.
#[program]
Definition rho_iota_red_wf {t} (rho : context → ∀ x, depth x < depth t → term) Γ
(p : PCUICAst.predicate term) npar (args : list term) (br : branch term)
(H : depth (bbody br) < depth t) :=
let bctx := inst_case_branch_context p br in
let br' := map_br_wf rho Γ p br _ in
subst0 (List.rev (skipn npar args)) (expand_lets bctx (bbody br')).
Definition rho_iota_red_gen (rho : context → term → term) Γ
(p : PCUICAst.predicate term) npar (args : list term) (br : branch term) :=
let bctx := inst_case_branch_context p br in
subst0 (List.rev (skipn npar args)) (expand_lets bctx (rho (Γ ,,, bctx) (bbody br))).
Lemma rho_iota_red_wf_gen (rho : context → term → term) t Γ p npar args br H :
rho_iota_red_wf (t:=t) (fun Γ x H ⇒ rho Γ x) Γ p npar args br H =
rho_iota_red_gen rho Γ p npar args br.
Proof using Type.
rewrite /rho_iota_red_wf /rho_iota_red_gen. f_equal.
Qed.
Hint Rewrite @rho_iota_red_wf_gen : rho.
Lemma bbody_branch_depth brs p :
list_depth_gen (depth ∘ bbody) brs <
S (list_depth_gen (branch_depth_gen depth p) brs).
Proof using Type.
rewrite /branch_depth_gen.
induction brs; simpl; auto. lia.
Qed.
From MetaCoq.Template Require Import config utils.
From MetaCoq.PCUIC Require Import PCUICAst PCUICOnOne PCUICAstUtils PCUICTactics PCUICSize PCUICLiftSubst
PCUICSigmaCalculus PCUICUnivSubst PCUICTyping PCUICReduction
PCUICReflect PCUICInduction PCUICClosed PCUICClosedConv PCUICClosedTyp PCUICDepth PCUICOnFreeVars
PCUICRenameDef PCUICRenameConv PCUICInstDef PCUICInstConv PCUICWeakeningConv PCUICWeakeningTyp
PCUICViews PCUICParallelReduction.
Require Import ssreflect ssrbool.
Require Import Morphisms CRelationClasses.
From Equations Require Import Equations.
Add Search Blacklist "pred1_rect".
Add Search Blacklist "_equation_".
Local Open Scope sigma_scope.
Local Set Keyed Unification.
Ltac solve_discr := (try (progress (prepare_discr; finish_discr; cbn [mkApps] in × )));
try discriminate.
Section FoldFix.
Context (rho : context → term → term).
Context (Γ : context).
Fixpoint fold_fix_context acc m :=
match m with
| [] ⇒ acc
| def :: fixd ⇒
fold_fix_context (vass def.(dname) (lift0 #|acc| (rho Γ def.(dtype))) :: acc) fixd
end.
End FoldFix.
Lemma fold_fix_context_length f Γ l m : #|fold_fix_context f Γ l m| = #|m| + #|l|.
Proof.
induction m in l |- *; simpl; auto. rewrite IHm. simpl. auto with arith.
Qed.
Lemma fix_context_gen_assumption_context k Γ : assumption_context (fix_context_gen k Γ).
Proof.
rewrite /fix_context_gen. revert k.
induction Γ using rev_ind.
constructor. intros.
rewrite mapi_rec_app /= List.rev_app_distr /=. constructor.
apply IHΓ.
Qed.
Lemma fix_context_assumption_context m : assumption_context (fix_context m).
Proof. apply fix_context_gen_assumption_context. Qed.
Lemma nth_error_assumption_context Γ n d :
assumption_context Γ → nth_error Γ n = Some d →
decl_body d = None.
Proof.
intros H; induction H in n, d |- × ; destruct n; simpl; try congruence; eauto.
now move⇒ [<-] //.
Qed.
Lemma atom_mkApps {t l} : atom (mkApps t l) → atom t ∧ l = [].
Proof.
induction l in t |- *; simpl; auto.
intros. destruct (IHl _ H). discriminate.
Qed.
Lemma pred_atom_mkApps {t l} : pred_atom (mkApps t l) → pred_atom t ∧ l = [].
Proof.
induction l in t |- *; simpl; auto.
intros. destruct (IHl _ H). discriminate.
Qed.
Ltac finish_discr :=
repeat PCUICAstUtils.finish_discr ||
match goal with
| [ H : atom (mkApps _ _) |- _ ] ⇒ apply atom_mkApps in H; intuition subst
| [ H : pred_atom (mkApps _ _) |- _ ] ⇒ apply pred_atom_mkApps in H; intuition subst
end.
Ltac solve_discr ::=
(try (progress (prepare_discr; finish_discr; cbn [mkApps] in × )));
(try (match goal with
| [ H : is_true (atom _) |- _ ] ⇒ discriminate
| [ H : is_true (atom (mkApps _ _)) |- _ ] ⇒ destruct (atom_mkApps H); subst; try discriminate
| [ H : is_true (pred_atom _) |- _ ] ⇒ discriminate
| [ H : is_true (pred_atom (mkApps _ _)) |- _ ] ⇒ destruct (pred_atom_mkApps H); subst; try discriminate
end)).
Section Pred1_inversion.
Lemma pred_snd_nth:
∀ (Σ : global_env) (Γ Δ : context) (c : nat) (brs1 brs' : list (nat × term)),
All2
(on_Trel (pred1 Σ Γ Δ) snd) brs1
brs' →
pred1_ctx Σ Γ Δ →
pred1 Σ Γ Δ
(snd (nth c brs1 (0, tDummy)))
(snd (nth c brs' (0, tDummy))).
Proof.
intros Σ Γ Δ c brs1 brs' brsl. intros.
induction brsl in c |- *; simpl. destruct c; now apply pred1_refl_gen.
destruct c; auto.
Qed.
Lemma pred_mkApps Σ Γ Δ M0 M1 N0 N1 :
pred1 Σ Γ Δ M0 M1 →
All2 (pred1 Σ Γ Δ) N0 N1 →
pred1 Σ Γ Δ (mkApps M0 N0) (mkApps M1 N1).
Proof.
intros.
induction X0 in M0, M1, X |- ×. auto.
simpl. eapply IHX0. now eapply pred_app.
Qed.
Lemma pred1_mkApps_tConstruct (Σ : global_env) (Γ Δ : context)
ind pars k (args : list term) c :
pred1 Σ Γ Δ (mkApps (tConstruct ind pars k) args) c →
{args' : list term & (c = mkApps (tConstruct ind pars k) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
depelim X... ∃ []. intuition auto.
intros. rewrite mkApps_app in X.
depelim X...
prepare_discr. apply mkApps_eq_decompose_app in H.
rewrite !decompose_app_rec_mkApps in H. noconf H.
destruct (IHargs _ X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Lemma pred1_mkApps_refl_tConstruct (Σ : global_env) Γ Δ i k u l l' :
pred1 Σ Γ Δ (mkApps (tConstruct i k u) l) (mkApps (tConstruct i k u) l') →
All2 (pred1 Σ Γ Δ) l l'.
Proof.
intros.
eapply pred1_mkApps_tConstruct in X. destruct X.
destruct p. now eapply mkApps_eq_inj in e as [_ <-].
Qed.
Lemma pred1_mkApps_tInd (Σ : global_env) (Γ Δ : context)
ind u (args : list term) c :
pred1 Σ Γ Δ (mkApps (tInd ind u) args) c →
{args' : list term & (c = mkApps (tInd ind u) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
depelim X... ∃ []. intuition auto.
intros. rewrite mkApps_app in X.
depelim X... simpl in H; noconf H. solve_discr.
prepare_discr. apply mkApps_eq_decompose_app in H.
rewrite !decompose_app_rec_mkApps in H. noconf H.
destruct (IHargs _ X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Derive NoConfusion for PCUICEnvironment.global_decl.
Lemma pred1_mkApps_tRel (Σ : global_env) (Γ Δ : context) k b (args : list term) c :
nth_error Γ k = Some b → decl_body b = None →
pred1 Σ Γ Δ (mkApps (tRel k) args) c →
{args' : list term & (c = mkApps (tRel k) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
- depelim X...
× ∃ []. intuition auto.
eapply nth_error_pred1_ctx in a; eauto.
destruct a as [body' [eqopt _]]. rewrite H /= H0 in eqopt. discriminate.
× ∃ []; intuition auto.
- rewrite mkApps_app /= in X.
depelim X; try (simpl in H1; noconf H1); solve_discr.
× prepare_discr. apply mkApps_eq_decompose_app in H1.
rewrite !decompose_app_rec_mkApps in H1. noconf H1.
× destruct (IHargs _ H H0 X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Lemma pred1_mkApps_tConst_axiom (Σ : global_env) (Γ Δ : context)
cst u (args : list term) cb c :
declared_constant Σ cst cb → cst_body cb = None →
pred1 Σ Γ Δ (mkApps (tConst cst u) args) c →
{args' : list term & (c = mkApps (tConst cst u) args') × (All2 (pred1 Σ Γ Δ) args args') }%type.
Proof with solve_discr.
revert c. induction args using rev_ind; intros; simpl in ×.
depelim X...
- red in H, isdecl. rewrite isdecl in H; noconf H.
congruence.
- ∃ []. intuition auto.
- rewrite mkApps_app in X.
depelim X...
× prepare_discr. apply mkApps_eq_decompose_app in H1.
rewrite !decompose_app_rec_mkApps in H1. noconf H1.
× destruct (IHargs _ H H0 X1) as [args' [-> Hargs']].
∃ (args' ++ [N1]).
rewrite mkApps_app. intuition auto.
eapply All2_app; auto.
Qed.
Lemma pred1_mkApps_tFix_inv Σ (Γ Δ : context)
mfix0 idx (args0 : list term) c d :
nth_error mfix0 idx = Some d →
~~ is_constructor (rarg d) args0 →
pred1 Σ Γ Δ (mkApps (tFix mfix0 idx) args0) c →
({ mfix1 & { args1 : list term &
(c = mkApps (tFix mfix1 idx) args1) ×
All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1)
dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ) ) args0 args1 } }%type).
Proof with solve_discr.
intros hnth isc pred. remember (mkApps _ _) as fixt.
revert mfix0 idx args0 Heqfixt hnth isc.
induction pred; intros; solve_discr.
- unfold unfold_fix in e.
red in a1.
eapply All2_nth_error_Some in a1; eauto.
destruct a1 as [t' [ht' [hds [hr [= eqna eqrarg]]]]].
rewrite ht' in e ⇒ //. noconf e. rewrite -eqrarg in e0.
rewrite e0 in isc ⇒ //.
- destruct args0 using rev_ind. noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
clear IHpred2. specialize (IHpred1 _ _ _ eq_refl).
specialize (IHpred1 hnth). apply is_constructor_prefix in isc.
specialize (IHpred1 isc).
destruct IHpred1 as [? [? [[? ?] ?]]].
eexists _. eexists (_ ++ [N1]). rewrite mkApps_app.
intuition eauto. simpl. subst M1. reflexivity.
eapply All2_app; eauto.
- ∃ mfix1, []. intuition auto.
- subst t. solve_discr.
Qed.
Lemma pred1_mkApps_tFix_refl_inv (Σ : global_env) (Γ Δ : context)
mfix0 mfix1 idx0 idx1 (args0 args1 : list term) d :
nth_error mfix0 idx0 = Some d →
is_constructor (rarg d) args0 = false →
pred1 Σ Γ Δ (mkApps (tFix mfix0 idx0) args0) (mkApps (tFix mfix1 idx1) args1) →
(All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1)
dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ) ) args0 args1).
Proof with solve_discr.
intros Hnth Hisc.
remember (mkApps _ _) as fixt.
remember (mkApps _ args1) as fixt'.
intros pred. revert mfix0 mfix1 idx0 args0 d Hnth Hisc idx1 args1 Heqfixt Heqfixt'.
induction pred; intros; solve_discr.
-
red in a1. eapply All2_nth_error_Some in a1; eauto.
destruct a1 as [t' [Hnth' [Hty [Hpred Hann]]]].
unfold unfold_fix in e. destruct (nth_error mfix1 idx) eqn:hfix1.
noconf e. noconf Hnth'.
move: Hann ⇒ [=] Hname Hrarg.
all:congruence.
- destruct args0 using rev_ind; noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
destruct args1 using rev_ind; noconf Heqfixt'. clear IHargs1.
rewrite mkApps_app in Heqfixt'. noconf Heqfixt'.
clear IHpred2.
assert (is_constructor (rarg d) args0 = false).
{ move: Hisc. rewrite /is_constructor.
elim: nth_error_spec. rewrite app_length.
move⇒ i hi harg. elim: nth_error_spec.
move⇒ i' hi' hrarg'.
rewrite nth_error_app_lt in hi; eauto. congruence.
auto.
rewrite app_length. move⇒ ge _.
elim: nth_error_spec; intros; try lia; auto.
}
specialize (IHpred1 _ _ _ _ _ Hnth H _ _ eq_refl eq_refl).
destruct IHpred1 as [? ?]. red in a.
unfold All2_prop2_eq. split. apply a. apply All2_app; auto.
- constructor; auto.
- subst. solve_discr.
Qed.
Lemma pred1_mkApps_tCoFix_inv (Σ : global_env) (Γ Δ : context)
mfix0 idx (args0 : list term) c :
pred1 Σ Γ Δ (mkApps (tCoFix mfix0 idx) args0) c →
∑ mfix1 args1,
(c = mkApps (tCoFix mfix1 idx) args1) ×
All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1) dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ) ) args0 args1.
Proof with solve_discr.
intros pred. remember (mkApps _ _) as fixt. revert mfix0 idx args0 Heqfixt.
induction pred; intros; solve_discr.
- destruct args0 using rev_ind. noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
clear IHpred2. specialize (IHpred1 _ _ _ eq_refl).
destruct IHpred1 as [? [? [[-> ?] ?]]].
eexists x, (x0 ++ [N1]). intuition auto.
now rewrite mkApps_app.
eapply All2_app; eauto.
- ∃ mfix1, []; intuition (simpl; auto).
- subst t; solve_discr.
Qed.
Lemma pred1_mkApps_tCoFix_refl_inv (Σ : global_env) (Γ Δ : context)
mfix0 mfix1 idx (args0 args1 : list term) :
pred1 Σ Γ Δ (mkApps (tCoFix mfix0 idx) args0) (mkApps (tCoFix mfix1 idx) args1) →
All2_prop2_eq Γ Δ (Γ ,,, fix_context mfix0) (Δ ,,, fix_context mfix1) dtype dbody
(fun x ⇒ (dname x, rarg x))
(pred1 Σ) mfix0 mfix1 ×
(All2 (pred1 Σ Γ Δ)) args0 args1.
Proof with solve_discr.
intros pred. remember (mkApps _ _) as fixt.
remember (mkApps _ args1) as fixt'.
revert mfix0 mfix1 idx args0 args1 Heqfixt Heqfixt'.
induction pred; intros; symmetry in Heqfixt; solve_discr.
- destruct args0 using rev_ind. noconf Heqfixt. clear IHargs0.
rewrite mkApps_app in Heqfixt. noconf Heqfixt.
clear IHpred2.
symmetry in Heqfixt'.
destruct args1 using rev_ind. discriminate. rewrite mkApps_app in Heqfixt'.
noconf Heqfixt'.
destruct (IHpred1 _ _ _ _ _ eq_refl eq_refl) as [H H'].
unfold All2_prop2_eq. split. apply H. apply All2_app; auto.
- repeat finish_discr.
unfold All2_prop2_eq. intuition (simpl; auto).
- subst t; solve_discr.
Qed.
End Pred1_inversion.
#[global]
Hint Constructors pred1 : pcuic.
Notation predicate_depth := (predicate_depth_gen depth).
Notation fold_context_term f := (fold_context (fun Γ' ⇒ map_decl (f Γ'))).
Section Rho.
Context {cf : checker_flags}.
Context (Σ : global_env).
Context (wfΣ : wf Σ).
#[program] Definition map_fix_rho {t} (rho : context → ∀ x, depth x < depth t → term) Γ mfixctx (mfix : mfixpoint term)
(H : mfixpoint_depth mfix < depth t) :=
(map_In mfix (fun d (H : In d mfix) ⇒ {| dname := dname d;
dtype := rho Γ (dtype d) _;
dbody := rho (Γ ,,, mfixctx) (dbody d) _; rarg := (rarg d) |})).
Next Obligation.
eapply (In_list_depth (def_depth_gen depth)) in H.
eapply Nat.le_lt_trans with (def_depth_gen depth d).
unfold def_depth_gen. lia.
unfold mfixpoint_depth in H0.
lia.
Qed.
Next Obligation.
eapply (In_list_depth (def_depth_gen depth)) in H.
eapply Nat.le_lt_trans with (def_depth_gen depth d).
unfold def_depth_gen. lia.
unfold mfixpoint_depth in H0.
lia.
Qed.
Equations? fold_fix_context_wf mfix
(rho : context → ∀ x, depth x ≤ (mfixpoint_depth mfix) → term)
(Γ acc : context) : context :=
fold_fix_context_wf [] rho Γ acc ⇒ acc ;
fold_fix_context_wf (d :: mfix) rho Γ acc ⇒
fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x _) Γ (vass (dname d) (lift0 #|acc| (rho Γ (dtype d) _)) :: acc).
Proof.
lia. unfold def_depth_gen. lia.
Qed.
Transparent fold_fix_context_wf.
#[program] Definition map_terms {t} (rho : context → ∀ x, depth x < depth t → term) Γ (l : list term)
(H : list_depth_gen depth l < depth t) :=
(map_In l (fun t (H : In t l) ⇒ rho Γ t _)).
Next Obligation.
eapply (In_list_depth depth) in H. lia.
Qed.
Section rho_ctx.
Context (Γ : context).
Context (rho : context → ∀ x, depth x ≤ context_depth Γ → term).
Program Definition rho_ctx_over_wf :=
fold_context_In Γ (fun Γ' d hin ⇒
match d with
| {| decl_name := na; decl_body := None; decl_type := T |} ⇒
vass na (rho Γ' T _)
| {| decl_name := na; decl_body := Some b; decl_type := T |} ⇒
vdef na (rho Γ' b _) (rho Γ' T _)
end).
Next Obligation.
eapply (In_list_depth (decl_depth_gen depth)) in hin.
unfold decl_depth_gen at 1 in hin. simpl in ×. unfold context_depth. lia.
Qed.
Next Obligation.
eapply (In_list_depth (decl_depth_gen depth)) in hin.
unfold decl_depth_gen at 1 in hin. simpl in ×. unfold context_depth. lia.
Qed.
Next Obligation.
eapply (In_list_depth (decl_depth_gen depth)) in hin.
unfold decl_depth_gen at 1 in hin. simpl in ×. unfold context_depth. lia.
Qed.
End rho_ctx.
Lemma rho_ctx_over_wf_eq (rho : context → term → term) (Γ : context) :
rho_ctx_over_wf Γ (fun Γ x hin ⇒ rho Γ x) =
fold_context_term rho Γ.
Proof using Type.
rewrite /rho_ctx_over_wf fold_context_In_spec.
apply fold_context_Proper. intros n x.
now destruct x as [na [b|] ty]; simpl.
Qed.
Hint Rewrite rho_ctx_over_wf_eq : rho.
#[program]
Definition map_br_wf {t} (rho : context → ∀ x, depth x < depth t → term)
Γ (p : PCUICAst.predicate term)
(br : branch term) (H : depth (bbody br) < depth t) :=
let bcontext' := inst_case_branch_context p br in
{| bcontext := br.(bcontext);
bbody := rho (Γ ,,, bcontext') br.(bbody) _ |}.
Definition map_br_gen (rho : context → term → term) Γ p (br : branch term) :=
let bcontext' := inst_case_branch_context p br in
{| bcontext := br.(bcontext);
bbody := rho (Γ ,,, bcontext') br.(bbody) |}.
Lemma map_br_map (rho : context → term → term) t Γ p l H :
@map_br_wf t (fun Γ x Hx ⇒ rho Γ x) Γ p l H = map_br_gen rho Γ p l.
Proof using Type.
unfold map_br_wf, map_br_gen. now f_equal; autorewrite with rho.
Qed.
Hint Rewrite map_br_map : rho.
#[program] Definition map_brs_wf {t} (rho : context → ∀ x, depth x < depth t → term) Γ
p (l : list (branch term))
(H : list_depth_gen (depth ∘ bbody) l < depth t) :=
map_In l (fun br (H : In br l) ⇒ map_br_wf rho Γ p br _).
Next Obligation.
eapply (In_list_depth (depth ∘ bbody)) in H. lia.
Qed.
Lemma map_brs_map (rho : context → term → term) t Γ p l H :
@map_brs_wf t (fun Γ x Hx ⇒ rho Γ x) Γ p l H = map (map_br_gen rho Γ p) l.
Proof using Type.
unfold map_brs_wf, map_br_wf. rewrite map_In_spec.
apply map_ext ⇒ x. now autorewrite with rho.
Qed.
Hint Rewrite map_brs_map : rho.
#[program] Definition rho_predicate_wf {t} (rho : context → ∀ x, depth x < depth t → term) Γ
(p : PCUICAst.predicate term) (H : predicate_depth p < depth t) :=
let params' := map_terms rho Γ p.(pparams) _ in
let pcontext' := inst_case_context params' p.(puinst) p.(pcontext) in
{| pparams := params';
puinst := p.(puinst) ;
pcontext := p.(pcontext) ;
preturn := rho (Γ ,,, pcontext') p.(preturn) _ |}.
Next Obligation.
pose proof (context_depth_inst_case_context p.(pparams) p.(puinst) p.(pcontext)).
rewrite /predicate_depth in H. lia.
Qed.
Next Obligation.
rewrite /predicate_depth in H. lia.
Qed.
Definition rho_predicate_gen (rho : context → term → term) Γ
(p : PCUICAst.predicate term) :=
let params' := map (rho Γ) p.(pparams) in
let pcontext' := inst_case_context params' p.(puinst) p.(pcontext) in
{| pparams := params';
puinst := p.(puinst) ;
pcontext := p.(pcontext) ;
preturn := rho (Γ ,,, pcontext') p.(preturn) |}.
Lemma map_terms_map (rho : context → term → term) t Γ l H :
@map_terms t (fun Γ x Hx ⇒ rho Γ x) Γ l H = map (rho Γ) l.
Proof using Type.
unfold map_terms. now rewrite map_In_spec.
Qed.
Hint Rewrite map_terms_map : rho.
Lemma rho_predicate_map_predicate {t} (rho : context → term → term) Γ p (H : predicate_depth p < depth t) :
rho_predicate_wf (fun Γ x H ⇒ rho Γ x) Γ p H =
rho_predicate_gen rho Γ p.
Proof using Type.
rewrite /rho_predicate_gen /rho_predicate_wf.
f_equal; simp rho ⇒ //.
Qed.
Hint Rewrite @rho_predicate_map_predicate : rho.
Definition inspect {A} (x : A) : { y : A | x = y } := exist x eq_refl.
Arguments Nat.max : simpl never.
#[program]
Definition rho_iota_red_wf {t} (rho : context → ∀ x, depth x < depth t → term) Γ
(p : PCUICAst.predicate term) npar (args : list term) (br : branch term)
(H : depth (bbody br) < depth t) :=
let bctx := inst_case_branch_context p br in
let br' := map_br_wf rho Γ p br _ in
subst0 (List.rev (skipn npar args)) (expand_lets bctx (bbody br')).
Definition rho_iota_red_gen (rho : context → term → term) Γ
(p : PCUICAst.predicate term) npar (args : list term) (br : branch term) :=
let bctx := inst_case_branch_context p br in
subst0 (List.rev (skipn npar args)) (expand_lets bctx (rho (Γ ,,, bctx) (bbody br))).
Lemma rho_iota_red_wf_gen (rho : context → term → term) t Γ p npar args br H :
rho_iota_red_wf (t:=t) (fun Γ x H ⇒ rho Γ x) Γ p npar args br H =
rho_iota_red_gen rho Γ p npar args br.
Proof using Type.
rewrite /rho_iota_red_wf /rho_iota_red_gen. f_equal.
Qed.
Hint Rewrite @rho_iota_red_wf_gen : rho.
Lemma bbody_branch_depth brs p :
list_depth_gen (depth ∘ bbody) brs <
S (list_depth_gen (branch_depth_gen depth p) brs).
Proof using Type.
rewrite /branch_depth_gen.
induction brs; simpl; auto. lia.
Qed.
Needs well-founded recursion on the depth of terms as we should reduce
strings of applications in one go.
Equations? rho (Γ : context) (t : term) : term by wf (depth t) :=
rho Γ (tApp t u) with view_lambda_fix_app t u :=
{ | fix_lambda_app_lambda na T b [] u :=
(rho (vass na (rho Γ T) :: Γ) b) {0 := rho Γ u};
| fix_lambda_app_lambda na T b (a :: l) u :=
mkApps ((rho (vass na (rho Γ T) :: Γ) b) {0 := rho Γ a})
(map_terms rho Γ (l ++ [u]) _);
| fix_lambda_app_fix mfix idx l u :=
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
let mfix' := map_fix_rho (t:=tFix mfix idx) (fun Γ x Hx ⇒ rho Γ x) Γ mfixctx mfix _ in
let args := map_terms rho Γ (l ++ [u]) _ in
match unfold_fix mfix' idx with
| Some (rarg, fn) ⇒
if is_constructor rarg (l ++ [u]) then
mkApps fn args
else mkApps (tFix mfix' idx) args
| None ⇒ mkApps (tFix mfix' idx) args
end ;
| fix_lambda_app_other t u nisfixlam := tApp (rho Γ t) (rho Γ u) } ;
rho Γ (tLetIn na d t b) ⇒ (subst10 (rho Γ d) (rho (vdef na (rho Γ d) (rho Γ t) :: Γ) b));
rho Γ (tRel i) with option_map decl_body (nth_error Γ i) := {
| Some (Some body) ⇒ (lift0 (S i) body);
| Some None ⇒ tRel i;
| None ⇒ tRel i };
rho Γ (tCase ci p x brs) with inspect (decompose_app x) :=
{ | exist (f, args) eqx with view_construct_cofix f :=
{ | construct_cofix_construct ind' c u with eq_inductive ci.(ci_ind) ind' :=
{ | true with inspect (nth_error brs c) ⇒
{ | exist (Some br) eqbr ⇒
if eqb #|args|
(ci_npar ci + context_assumptions (bcontext br)) then
let p' := rho_predicate_wf rho Γ p _ in
let args' := map_terms rho Γ args _ in
rho_iota_red_wf rho Γ p' ci.(ci_npar) args' br _
else
let p' := rho_predicate_wf rho Γ p _ in
let brs' := map_brs_wf rho Γ p' brs _ in
let x' := rho Γ x in
tCase ci p' x' brs';
| exist None eqbr ⇒
let p' := rho_predicate_wf rho Γ p _ in
let brs' := map_brs_wf rho Γ p' brs _ in
let x' := rho Γ x in
tCase ci p' x' brs' };
| false ⇒
let p' := rho_predicate_wf rho Γ p _ in
let x' := rho Γ x in
let brs' := map_brs_wf rho Γ p' brs _ in
tCase ci p' x' brs' };
| construct_cofix_cofix mfix idx :=
let p' := rho_predicate_wf rho Γ p _ in
let args' := map_terms rho Γ args _ in
let brs' := map_brs_wf rho Γ p' brs _ in
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
let mfix' := map_fix_rho (t:=tCase ci p x brs) rho Γ mfixctx mfix _ in
match nth_error mfix' idx with
| Some d ⇒
tCase ci p' (mkApps (subst0 (cofix_subst mfix') (dbody d)) args') brs'
| None ⇒ tCase ci p' (rho Γ x) brs'
end;
| construct_cofix_other _ nconscof ⇒
let p' := rho_predicate_wf rho Γ p _ in
let x' := rho Γ x in
let brs' := map_brs_wf rho Γ p' brs _ in
tCase ci p' x' brs' } };
rho Γ (tProj p x) with inspect (decompose_app x) := {
| exist (f, args) eqx with view_construct0_cofix f :=
| construct0_cofix_construct ind u with
inspect (nth_error (map_terms rho Γ args _) (p.(proj_npars) + p.(proj_arg))) := {
| exist (Some arg1) eq ⇒
if eq_inductive p.(proj_ind) ind then arg1
else tProj p (rho Γ x);
| exist None neq ⇒ tProj p (rho Γ x) };
| construct0_cofix_cofix mfix idx :=
let args' := map_terms rho Γ args _ in
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
let mfix' := map_fix_rho (t:=tProj p x) rho Γ mfixctx mfix _ in
match nth_error mfix' idx with
| Some d ⇒ tProj p (mkApps (subst0 (cofix_subst mfix') (dbody d)) args')
| None ⇒ tProj p (rho Γ x)
end;
| construct0_cofix_other f nconscof ⇒ tProj p (rho Γ x) } ;
rho Γ (tConst c u) with lookup_env Σ c := {
| Some (ConstantDecl decl) with decl.(cst_body) := {
| Some body ⇒ subst_instance u body;
| None ⇒ tConst c u };
| _ ⇒ tConst c u };
rho Γ (tLambda na t u) ⇒ tLambda na (rho Γ t) (rho (vass na (rho Γ t) :: Γ) u);
rho Γ (tProd na t u) ⇒ tProd na (rho Γ t) (rho (vass na (rho Γ t) :: Γ) u);
rho Γ (tVar i) ⇒ tVar i;
rho Γ (tEvar n l) ⇒ tEvar n (map_terms rho Γ l _);
rho Γ (tSort s) ⇒ tSort s;
rho Γ (tFix mfix idx) ⇒
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
tFix (map_fix_rho (t:=tFix mfix idx) (fun Γ x Hx ⇒ rho Γ x) Γ mfixctx mfix _) idx;
rho Γ (tCoFix mfix idx) ⇒
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
tCoFix (map_fix_rho (t:=tCoFix mfix idx) rho Γ mfixctx mfix _) idx;
rho Γ x ⇒ x.
Proof.
all:try abstract lia.
Ltac d :=
match goal with
|- context [depth (mkApps ?f ?l)] ⇒
move: (depth_mkApps f l); cbn -[Nat.max]; try lia
end.
Ltac invd :=
match goal with
[ H : decompose_app ?x = _ |- _ ] ⇒
eapply decompose_app_inv in H; subst x
end.
all:try abstract (rewrite ?list_depth_app; d).
all:try solve [clear -eqx; abstract (invd; d)].
all:try solve [clear; move:(bbody_branch_depth brs p); lia].
- clear -eqbr.
abstract (eapply (nth_error_depth (branch_depth_gen depth p)) in eqbr;
unfold branch_depth_gen in eqbr |- *; lia).
- clear -eqx Hx. abstract (invd; d).
- clear -eqx Hx. abstract (invd; d).
Defined.
Notation rho_predicate := (rho_predicate_gen rho).
Notation rho_br := (map_br_gen rho).
Notation rho_ctx_over Γ :=
(fold_context (fun Δ ⇒ map_decl (rho (Γ ,,, Δ)))).
Notation rho_ctx := (fold_context_term rho).
Notation rho_iota_red := (rho_iota_red_gen rho).
Lemma rho_ctx_over_length Δ Γ : #|rho_ctx_over Δ Γ| = #|Γ|.
Proof using Type.
now rewrite fold_context_length.
Qed.
Definition rho_fix_context Γ mfix :=
fold_fix_context rho Γ [] mfix.
Lemma rho_fix_context_length Γ mfix : #|rho_fix_context Γ mfix| = #|mfix|.
Proof using Type. now rewrite fold_fix_context_length Nat.add_0_r. Qed.
Definition map_fix (rho : context → term → term) Γ mfixctx (mfix : mfixpoint term) :=
(map (map_def (rho Γ) (rho (Γ ,,, mfixctx))) mfix).
Lemma map_fix_rho_map t Γ mfix ctx H :
@map_fix_rho t (fun Γ x Hx ⇒ rho Γ x) Γ ctx mfix H =
map_fix rho Γ ctx mfix.
Proof using Type.
unfold map_fix_rho. now rewrite map_In_spec.
Qed.
Lemma fold_fix_context_wf_fold mfix Γ ctx :
fold_fix_context_wf mfix (fun Γ x _ ⇒ rho Γ x) Γ ctx =
fold_fix_context rho Γ ctx mfix.
Proof using Type.
induction mfix in ctx |- *; simpl; auto.
Qed.
Hint Rewrite map_fix_rho_map fold_fix_context_wf_fold : rho.
Ltac discr_mkApps H :=
let Hf := fresh in let Hargs := fresh in
rewrite ?tApp_mkApps -?mkApps_app in H;
(eapply mkApps_nApp_inj in H as [Hf Hargs] ||
eapply (mkApps_nApp_inj _ _ []) in H as [Hf Hargs] ||
eapply (mkApps_nApp_inj _ _ _ []) in H as [Hf Hargs]);
[noconf Hf|reflexivity].
Set Equations With UIP.
Lemma rho_app_lambda Γ na ty b a l :
rho Γ (mkApps (tApp (tLambda na ty b) a) l) =
mkApps ((rho (vass na (rho Γ ty) :: Γ) b) {0 := rho Γ a}) (map (rho Γ) l).
Proof using Type.
induction l using rev_ind; autorewrite with rho.
- simpl. reflexivity.
- simpl. rewrite mkApps_app. autorewrite with rho.
change (mkApps (tApp (tLambda na ty b) a) l) with
(mkApps (tLambda na ty b) (a :: l)).
now simp rho.
Qed.
Lemma rho_app_lambda' Γ na ty b l :
rho Γ (mkApps (tLambda na ty b) l) =
match l with
| [] ⇒ rho Γ (tLambda na ty b)
| a :: l ⇒
mkApps ((rho (vass na (rho Γ ty) :: Γ) b) {0 := rho Γ a}) (map (rho Γ) l)
end.
Proof using Type.
destruct l using rev_case; autorewrite with rho; auto.
simpl. rewrite mkApps_app. simp rho.
destruct l; simpl; auto. now simp rho.
Qed.
Lemma rho_app_construct Γ c u i l :
rho Γ (mkApps (tConstruct c u i) l) =
mkApps (tConstruct c u i) (map (rho Γ) l).
Proof using Type.
induction l using rev_ind; autorewrite with rho; auto.
simpl. rewrite mkApps_app. simp rho.
unshelve erewrite view_lambda_fix_app_other. simpl.
clear; induction l using rev_ind; simpl; auto.
rewrite mkApps_app. simpl. apply IHl.
simp rho. rewrite IHl. now rewrite map_app mkApps_app.
Qed.
Hint Rewrite rho_app_construct : rho.
Lemma rho_app_cofix Γ mfix idx l :
rho Γ (mkApps (tCoFix mfix idx) l) =
mkApps (tCoFix (map_fix rho Γ (rho_fix_context Γ mfix) mfix) idx) (map (rho Γ) l).
Proof using Type.
induction l using rev_ind; autorewrite with rho; auto.
simpl. now simp rho. rewrite mkApps_app. simp rho.
unshelve erewrite view_lambda_fix_app_other. simpl.
clear; induction l using rev_ind; simpl; auto.
rewrite mkApps_app. simpl. apply IHl.
simp rho. rewrite IHl. now rewrite map_app mkApps_app.
Qed.
Hint Rewrite rho_app_cofix : rho.
Lemma map_cofix_subst (f : context → term → term)
(f' : context → context → term → term) mfix Γ Γ' :
(∀ n, tCoFix (map (map_def (f Γ) (f' Γ Γ')) mfix) n = f Γ (tCoFix mfix n)) →
cofix_subst (map (map_def (f Γ) (f' Γ Γ')) mfix) =
map (f Γ) (cofix_subst mfix).
Proof using Type.
unfold cofix_subst. intros.
rewrite map_length. generalize (#|mfix|). induction n. simpl. reflexivity.
simpl. rewrite - IHn. f_equal. apply H.
Qed.
Lemma map_cofix_subst' f g mfix :
(∀ n, tCoFix (map (map_def f g) mfix) n = f (tCoFix mfix n)) →
cofix_subst (map (map_def f g) mfix) =
map f (cofix_subst mfix).
Proof using Type.
unfold cofix_subst. intros.
rewrite map_length. generalize (#|mfix|) at 1 2. induction n. simpl. reflexivity.
simpl. rewrite - IHn. f_equal. apply H.
Qed.
Lemma map_fix_subst f g mfix :
(∀ n, tFix (map (map_def f g) mfix) n = f (tFix mfix n)) →
fix_subst (map (map_def f g) mfix) =
map f (fix_subst mfix).
Proof using Type.
unfold fix_subst. intros.
rewrite map_length. generalize (#|mfix|) at 1 2. induction n. simpl. reflexivity.
simpl. rewrite - IHn. f_equal. apply H.
Qed.
Lemma rho_app_fix Γ mfix idx args :
let rhoargs := map (rho Γ) args in
rho Γ (mkApps (tFix mfix idx) args) =
match nth_error mfix idx with
| Some d ⇒
if is_constructor (rarg d) args then
let fn := (subst0 (map (rho Γ) (fix_subst mfix))) (rho (Γ ,,, fold_fix_context rho Γ [] mfix) (dbody d)) in
mkApps fn rhoargs
else mkApps (rho Γ (tFix mfix idx)) rhoargs
| None ⇒ mkApps (rho Γ (tFix mfix idx)) rhoargs
end.
Proof using Type.
induction args using rev_ind; autorewrite with rho.
- intros rhoargs.
destruct nth_error as [d|] eqn:eqfix ⇒ //.
rewrite /is_constructor nth_error_nil //.
- simpl. rewrite map_app /=.
destruct nth_error as [d|] eqn:eqfix ⇒ //.
destruct (is_constructor (rarg d) (args ++ [x])) eqn:isc; simp rho.
× rewrite mkApps_app /=.
autorewrite with rho.
simpl. simp rho. rewrite /unfold_fix.
rewrite /map_fix nth_error_map eqfix /= isc map_fix_subst ?map_app //.
intros n; simp rho. simpl. f_equal; now simp rho.
× rewrite mkApps_app /=.
simp rho. simpl. simp rho.
now rewrite /unfold_fix /map_fix nth_error_map eqfix /= isc map_app.
× rewrite mkApps_app /=. simp rho.
simpl. simp rho.
now rewrite /unfold_fix /map_fix nth_error_map eqfix /= map_app.
Qed.
Inductive rho_fix_spec Γ mfix i l : term → Type :=
| rho_fix_red d :
let fn := (subst0 (map (rho Γ) (fix_subst mfix))) (rho (Γ ,,, rho_fix_context Γ mfix) (dbody d)) in
nth_error mfix i = Some d →
is_constructor (rarg d) l →
rho_fix_spec Γ mfix i l (mkApps fn (map (rho Γ) l))
| rho_fix_stuck :
(match nth_error mfix i with
| None ⇒ true
| Some d ⇒ ~~ is_constructor (rarg d) l
end) →
rho_fix_spec Γ mfix i l (mkApps (rho Γ (tFix mfix i)) (map (rho Γ) l)).
Lemma rho_fix_elim Γ mfix i l :
rho_fix_spec Γ mfix i l (rho Γ (mkApps (tFix mfix i) l)).
Proof using Type.
rewrite rho_app_fix /= /unfold_fix.
case e: nth_error ⇒ [d|] /=.
case isc: is_constructor ⇒ /=.
- eapply (rho_fix_red Γ mfix i l d) ⇒ //.
- apply rho_fix_stuck.
now rewrite e isc.
- apply rho_fix_stuck. now rewrite e /=.
Qed.
Lemma rho_app_case Γ ci p x brs :
rho Γ (tCase ci p x brs) =
let (f, args) := decompose_app x in
let p' := rho_predicate Γ p in
match f with
| tConstruct ind' c u ⇒
if eq_inductive ci.(ci_ind) ind' then
match nth_error brs c with
| Some br ⇒
if eqb #|args| (ci_npar ci + context_assumptions (bcontext br)) then
let args' := map (rho Γ) args in
rho_iota_red Γ p' ci.(ci_npar) args' br
else tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
| None ⇒ tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
end
else tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
| tCoFix mfix idx ⇒
match nth_error mfix idx with
| Some d ⇒
let fn := (subst0 (map (rho Γ) (cofix_subst mfix))) (rho (Γ ,,, fold_fix_context rho Γ [] mfix) (dbody d)) in
tCase ci (rho_predicate Γ p) (mkApps fn (map (rho Γ) args))
(map (rho_br Γ p') brs)
| None ⇒ tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
end
| _ ⇒ tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
end.
Proof using Type.
autorewrite with rho.
set (app := inspect _).
destruct app as [[f l] eqapp].
rewrite {2}eqapp. autorewrite with rho.
destruct view_construct_cofix; autorewrite with rho.
destruct eq_inductive eqn:eqi; simp rho ⇒ //.
destruct inspect as [[br|] eqnth]; cbv zeta; simp rho; rewrite eqnth //; cbv zeta; simp rho ⇒ //.
simpl; now simp rho.
cbv zeta.
simpl. autorewrite with rho. rewrite /map_fix nth_error_map.
destruct nth_error ⇒ /=. f_equal.
f_equal. rewrite (map_cofix_subst rho (fun x y ⇒ rho (x ,,, y))) //.
intros. autorewrite with rho. simpl. now autorewrite with rho.
reflexivity.
simpl.
autorewrite with rho.
destruct t; simpl in d ⇒ //.
Qed.
Lemma rho_app_proj Γ p x :
rho Γ (tProj p x) =
let (f, args) := decompose_app x in
match f with
| tConstruct ind' 0 u ⇒
if eq_inductive p.(proj_ind) ind' then
match nth_error args (p.(proj_npars) + p.(proj_arg)) with
| Some arg1 ⇒ rho Γ arg1
| None ⇒ tProj p (rho Γ x)
end
else tProj p (rho Γ x)
| tCoFix mfix idx ⇒
match nth_error mfix idx with
| Some d ⇒
let fn := (subst0 (map (rho Γ) (cofix_subst mfix))) (rho (Γ ,,, fold_fix_context rho Γ [] mfix) (dbody d)) in
tProj p (mkApps fn (map (rho Γ) args))
| None ⇒ tProj p (rho Γ x)
end
| _ ⇒ tProj p (rho Γ x)
end.
Proof using Type.
autorewrite with rho.
set (app := inspect _).
destruct app as [[f l] eqapp].
rewrite {2}eqapp. autorewrite with rho.
destruct view_construct0_cofix; autorewrite with rho.
destruct eq_inductive eqn:eqi; simp rho ⇒ //.
set (arg' := inspect _). clearbody arg'.
destruct arg' as [[arg'|] eqarg'];
autorewrite with rho. rewrite eqi.
simp rho in eqarg'. rewrite nth_error_map in eqarg'.
destruct nth_error ⇒ //. now simpl in eqarg'.
simp rho in eqarg'; rewrite nth_error_map in eqarg'.
destruct nth_error ⇒ //.
destruct inspect as [[arg'|] eqarg'] ⇒ //; simp rho.
now rewrite eqi.
simpl. autorewrite with rho.
rewrite /map_fix nth_error_map.
destruct nth_error eqn:nth ⇒ /= //.
f_equal. f_equal. f_equal.
rewrite (map_cofix_subst rho (fun x y ⇒ rho (x ,,, y))) //.
intros. autorewrite with rho. simpl. now autorewrite with rho.
simpl. eapply decompose_app_inv in eqapp.
subst x. destruct t; simpl in d ⇒ //.
now destruct n.
Qed.
Lemma fold_fix_context_rev_mapi {Γ l m} :
fold_fix_context rho Γ l m =
List.rev (mapi (fun (i : nat) (x : def term) ⇒
vass (dname x) ((lift0 (#|l| + i)) (rho Γ (dtype x)))) m) ++ l.
Proof using Type.
unfold mapi.
rewrite rev_mapi.
induction m in l |- ×. simpl. auto.
intros. simpl. rewrite mapi_app. simpl.
rewrite IHm. cbn.
rewrite - app_assoc. simpl. rewrite List.rev_length.
rewrite Nat.add_0_r. rewrite Nat.sub_diag Nat.add_0_r. simpl.
f_equal. apply mapi_ext_size. simpl; intros.
rewrite List.rev_length in H. lia_f_equal.
Qed.
Lemma fold_fix_context_rev {Γ m} :
fold_fix_context rho Γ [] m =
List.rev (mapi (fun (i : nat) (x : def term) ⇒
vass (dname x) (lift0 i (rho Γ (dtype x)))) m).
Proof using Type.
pose proof (@fold_fix_context_rev_mapi Γ [] m).
now rewrite app_nil_r in H.
Qed.
Lemma nth_error_map_fix i f Γ Δ m :
nth_error (map_fix f Γ Δ m) i = option_map (map_def (f Γ) (f (Γ ,,, Δ))) (nth_error m i).
Proof using Type.
now rewrite /map_fix nth_error_map.
Qed.
Lemma fold_fix_context_app Γ l acc acc' :
fold_fix_context rho Γ l (acc ++ acc') =
fold_fix_context rho Γ (fold_fix_context rho Γ l acc) acc'.
Proof using Type.
induction acc in l, acc' |- ×. simpl. auto.
simpl. rewrite IHacc. reflexivity.
Qed.
Definition pres_bodies Γ Δ σ :=
All2i_len
(fun n decl decl' ⇒ (decl_body decl' = option_map (fun x ⇒ x.[⇑^n σ]) (decl_body decl)))
Γ Δ.
Lemma pres_bodies_inst_context Γ σ : pres_bodies Γ (inst_context σ Γ) σ.
Proof using Type.
red; induction Γ. constructor.
rewrite inst_context_snoc. constructor. simpl. reflexivity.
apply IHΓ.
Qed.
Hint Resolve pres_bodies_inst_context : pcuic.
Definition ctxmap (Γ Δ : context) (s : nat → term) :=
∀ x d, nth_error Γ x = Some d →
match decl_body d return Type with
| Some b ⇒
∑ i b', s x = tRel i ∧
option_map decl_body (nth_error Δ i) = Some (Some b') ∧
b'.[↑^(S i)] = b.[↑^(S x) ∘s s]
| None ⇒ True
end.
Lemma All2_prop2_eq_split (Γ Γ' Γ2 Γ2' : context) (A B : Type) (f g : A → term)
(h : A → B) (rel : context → context → term → term → Type) x y :
All2_prop2_eq Γ Γ' Γ2 Γ2' f g h rel x y →
All2 (on_Trel (rel Γ Γ') f) x y ×
All2 (on_Trel (rel Γ2 Γ2') g) x y ×
All2 (on_Trel eq h) x y.
Proof using Type.
induction 1; intuition.
Qed.
Lemma refine_pred Γ Δ t u u' : u = u' → pred1 Σ Γ Δ t u' → pred1 Σ Γ Δ t u.
Proof using Type. now intros →. Qed.
Lemma ctxmap_ext Γ Δ : CMorphisms.Proper (CMorphisms.respectful (pointwise_relation _ eq) iffT) (ctxmap Γ Δ).
Proof using Type.
red. red. intros.
split; intros X.
- intros n d Hn. specialize (X n d Hn).
destruct d as [na [b|] ty]; simpl in *; auto.
destruct X as [i [b' [? ?]]]. ∃ i, b'.
rewrite -H. split; auto.
- intros n d Hn. specialize (X n d Hn).
destruct d as [na [b|] ty]; simpl in *; auto.
destruct X as [i [b' [? ?]]]. ∃ i, b'.
rewrite H. split; auto.
Qed.
Lemma Up_ctxmap Γ Δ c c' σ :
ctxmap Γ Δ σ →
(decl_body c' = option_map (fun x ⇒ x.[σ]) (decl_body c)) →
ctxmap (Γ ,, c) (Δ ,, c') (⇑ σ).
Proof using Type.
intros.
intros x d Hnth.
destruct x; simpl in *; noconf Hnth.
destruct c as [na [b|] ty]; simpl; auto.
∃ 0. eexists. repeat split; eauto. simpl in H. simpl. now rewrite H.
now autorewrite with sigma.
specialize (X _ _ Hnth). destruct decl_body; auto.
destruct X as [i [b' [? [? ?]]]]; auto.
∃ (S i), b'. simpl. repeat split; auto.
unfold subst_compose. now rewrite H0.
autorewrite with sigma in H2 |- ×.
rewrite -subst_compose_assoc.
rewrite -subst_compose_assoc.
rewrite -subst_compose_assoc.
rewrite -inst_assoc. rewrite H2.
now autorewrite with sigma.
Qed.
Lemma Upn_ctxmap Γ Δ Γ' Δ' σ :
pres_bodies Γ' Δ' σ →
ctxmap Γ Δ σ →
ctxmap (Γ ,,, Γ') (Δ ,,, Δ') (⇑^#|Γ'| σ).
Proof using Type.
induction 1. simpl. intros.
eapply ctxmap_ext. rewrite Upn_0. reflexivity. apply X.
simpl. intros Hσ.
eapply ctxmap_ext. now sigma.
eapply Up_ctxmap; eauto.
Qed.
Hint Resolve Upn_ctxmap : pcuic.
Lemma inst_ctxmap Γ Δ Γ' σ :
ctxmap Γ Δ σ →
ctxmap (Γ ,,, Γ') (Δ ,,, inst_context σ Γ') (⇑^#|Γ'| σ).
Proof using Type.
intros cmap.
apply Upn_ctxmap ⇒ //.
apply pres_bodies_inst_context.
Qed.
Hint Resolve inst_ctxmap : pcuic.
Lemma inst_ctxmap_up Γ Δ Γ' σ :
ctxmap Γ Δ σ →
ctxmap (Γ ,,, Γ') (Δ ,,, inst_context σ Γ') (up #|Γ'| σ).
Proof using Type.
intros cmap.
eapply ctxmap_ext. rewrite up_Upn. reflexivity.
now apply inst_ctxmap.
Qed.
Hint Resolve inst_ctxmap_up : pcuic.
rho Γ (tApp t u) with view_lambda_fix_app t u :=
{ | fix_lambda_app_lambda na T b [] u :=
(rho (vass na (rho Γ T) :: Γ) b) {0 := rho Γ u};
| fix_lambda_app_lambda na T b (a :: l) u :=
mkApps ((rho (vass na (rho Γ T) :: Γ) b) {0 := rho Γ a})
(map_terms rho Γ (l ++ [u]) _);
| fix_lambda_app_fix mfix idx l u :=
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
let mfix' := map_fix_rho (t:=tFix mfix idx) (fun Γ x Hx ⇒ rho Γ x) Γ mfixctx mfix _ in
let args := map_terms rho Γ (l ++ [u]) _ in
match unfold_fix mfix' idx with
| Some (rarg, fn) ⇒
if is_constructor rarg (l ++ [u]) then
mkApps fn args
else mkApps (tFix mfix' idx) args
| None ⇒ mkApps (tFix mfix' idx) args
end ;
| fix_lambda_app_other t u nisfixlam := tApp (rho Γ t) (rho Γ u) } ;
rho Γ (tLetIn na d t b) ⇒ (subst10 (rho Γ d) (rho (vdef na (rho Γ d) (rho Γ t) :: Γ) b));
rho Γ (tRel i) with option_map decl_body (nth_error Γ i) := {
| Some (Some body) ⇒ (lift0 (S i) body);
| Some None ⇒ tRel i;
| None ⇒ tRel i };
rho Γ (tCase ci p x brs) with inspect (decompose_app x) :=
{ | exist (f, args) eqx with view_construct_cofix f :=
{ | construct_cofix_construct ind' c u with eq_inductive ci.(ci_ind) ind' :=
{ | true with inspect (nth_error brs c) ⇒
{ | exist (Some br) eqbr ⇒
if eqb #|args|
(ci_npar ci + context_assumptions (bcontext br)) then
let p' := rho_predicate_wf rho Γ p _ in
let args' := map_terms rho Γ args _ in
rho_iota_red_wf rho Γ p' ci.(ci_npar) args' br _
else
let p' := rho_predicate_wf rho Γ p _ in
let brs' := map_brs_wf rho Γ p' brs _ in
let x' := rho Γ x in
tCase ci p' x' brs';
| exist None eqbr ⇒
let p' := rho_predicate_wf rho Γ p _ in
let brs' := map_brs_wf rho Γ p' brs _ in
let x' := rho Γ x in
tCase ci p' x' brs' };
| false ⇒
let p' := rho_predicate_wf rho Γ p _ in
let x' := rho Γ x in
let brs' := map_brs_wf rho Γ p' brs _ in
tCase ci p' x' brs' };
| construct_cofix_cofix mfix idx :=
let p' := rho_predicate_wf rho Γ p _ in
let args' := map_terms rho Γ args _ in
let brs' := map_brs_wf rho Γ p' brs _ in
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
let mfix' := map_fix_rho (t:=tCase ci p x brs) rho Γ mfixctx mfix _ in
match nth_error mfix' idx with
| Some d ⇒
tCase ci p' (mkApps (subst0 (cofix_subst mfix') (dbody d)) args') brs'
| None ⇒ tCase ci p' (rho Γ x) brs'
end;
| construct_cofix_other _ nconscof ⇒
let p' := rho_predicate_wf rho Γ p _ in
let x' := rho Γ x in
let brs' := map_brs_wf rho Γ p' brs _ in
tCase ci p' x' brs' } };
rho Γ (tProj p x) with inspect (decompose_app x) := {
| exist (f, args) eqx with view_construct0_cofix f :=
| construct0_cofix_construct ind u with
inspect (nth_error (map_terms rho Γ args _) (p.(proj_npars) + p.(proj_arg))) := {
| exist (Some arg1) eq ⇒
if eq_inductive p.(proj_ind) ind then arg1
else tProj p (rho Γ x);
| exist None neq ⇒ tProj p (rho Γ x) };
| construct0_cofix_cofix mfix idx :=
let args' := map_terms rho Γ args _ in
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
let mfix' := map_fix_rho (t:=tProj p x) rho Γ mfixctx mfix _ in
match nth_error mfix' idx with
| Some d ⇒ tProj p (mkApps (subst0 (cofix_subst mfix') (dbody d)) args')
| None ⇒ tProj p (rho Γ x)
end;
| construct0_cofix_other f nconscof ⇒ tProj p (rho Γ x) } ;
rho Γ (tConst c u) with lookup_env Σ c := {
| Some (ConstantDecl decl) with decl.(cst_body) := {
| Some body ⇒ subst_instance u body;
| None ⇒ tConst c u };
| _ ⇒ tConst c u };
rho Γ (tLambda na t u) ⇒ tLambda na (rho Γ t) (rho (vass na (rho Γ t) :: Γ) u);
rho Γ (tProd na t u) ⇒ tProd na (rho Γ t) (rho (vass na (rho Γ t) :: Γ) u);
rho Γ (tVar i) ⇒ tVar i;
rho Γ (tEvar n l) ⇒ tEvar n (map_terms rho Γ l _);
rho Γ (tSort s) ⇒ tSort s;
rho Γ (tFix mfix idx) ⇒
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
tFix (map_fix_rho (t:=tFix mfix idx) (fun Γ x Hx ⇒ rho Γ x) Γ mfixctx mfix _) idx;
rho Γ (tCoFix mfix idx) ⇒
let mfixctx := fold_fix_context_wf mfix (fun Γ x Hx ⇒ rho Γ x) Γ [] in
tCoFix (map_fix_rho (t:=tCoFix mfix idx) rho Γ mfixctx mfix _) idx;
rho Γ x ⇒ x.
Proof.
all:try abstract lia.
Ltac d :=
match goal with
|- context [depth (mkApps ?f ?l)] ⇒
move: (depth_mkApps f l); cbn -[Nat.max]; try lia
end.
Ltac invd :=
match goal with
[ H : decompose_app ?x = _ |- _ ] ⇒
eapply decompose_app_inv in H; subst x
end.
all:try abstract (rewrite ?list_depth_app; d).
all:try solve [clear -eqx; abstract (invd; d)].
all:try solve [clear; move:(bbody_branch_depth brs p); lia].
- clear -eqbr.
abstract (eapply (nth_error_depth (branch_depth_gen depth p)) in eqbr;
unfold branch_depth_gen in eqbr |- *; lia).
- clear -eqx Hx. abstract (invd; d).
- clear -eqx Hx. abstract (invd; d).
Defined.
Notation rho_predicate := (rho_predicate_gen rho).
Notation rho_br := (map_br_gen rho).
Notation rho_ctx_over Γ :=
(fold_context (fun Δ ⇒ map_decl (rho (Γ ,,, Δ)))).
Notation rho_ctx := (fold_context_term rho).
Notation rho_iota_red := (rho_iota_red_gen rho).
Lemma rho_ctx_over_length Δ Γ : #|rho_ctx_over Δ Γ| = #|Γ|.
Proof using Type.
now rewrite fold_context_length.
Qed.
Definition rho_fix_context Γ mfix :=
fold_fix_context rho Γ [] mfix.
Lemma rho_fix_context_length Γ mfix : #|rho_fix_context Γ mfix| = #|mfix|.
Proof using Type. now rewrite fold_fix_context_length Nat.add_0_r. Qed.
Definition map_fix (rho : context → term → term) Γ mfixctx (mfix : mfixpoint term) :=
(map (map_def (rho Γ) (rho (Γ ,,, mfixctx))) mfix).
Lemma map_fix_rho_map t Γ mfix ctx H :
@map_fix_rho t (fun Γ x Hx ⇒ rho Γ x) Γ ctx mfix H =
map_fix rho Γ ctx mfix.
Proof using Type.
unfold map_fix_rho. now rewrite map_In_spec.
Qed.
Lemma fold_fix_context_wf_fold mfix Γ ctx :
fold_fix_context_wf mfix (fun Γ x _ ⇒ rho Γ x) Γ ctx =
fold_fix_context rho Γ ctx mfix.
Proof using Type.
induction mfix in ctx |- *; simpl; auto.
Qed.
Hint Rewrite map_fix_rho_map fold_fix_context_wf_fold : rho.
Ltac discr_mkApps H :=
let Hf := fresh in let Hargs := fresh in
rewrite ?tApp_mkApps -?mkApps_app in H;
(eapply mkApps_nApp_inj in H as [Hf Hargs] ||
eapply (mkApps_nApp_inj _ _ []) in H as [Hf Hargs] ||
eapply (mkApps_nApp_inj _ _ _ []) in H as [Hf Hargs]);
[noconf Hf|reflexivity].
Set Equations With UIP.
Lemma rho_app_lambda Γ na ty b a l :
rho Γ (mkApps (tApp (tLambda na ty b) a) l) =
mkApps ((rho (vass na (rho Γ ty) :: Γ) b) {0 := rho Γ a}) (map (rho Γ) l).
Proof using Type.
induction l using rev_ind; autorewrite with rho.
- simpl. reflexivity.
- simpl. rewrite mkApps_app. autorewrite with rho.
change (mkApps (tApp (tLambda na ty b) a) l) with
(mkApps (tLambda na ty b) (a :: l)).
now simp rho.
Qed.
Lemma rho_app_lambda' Γ na ty b l :
rho Γ (mkApps (tLambda na ty b) l) =
match l with
| [] ⇒ rho Γ (tLambda na ty b)
| a :: l ⇒
mkApps ((rho (vass na (rho Γ ty) :: Γ) b) {0 := rho Γ a}) (map (rho Γ) l)
end.
Proof using Type.
destruct l using rev_case; autorewrite with rho; auto.
simpl. rewrite mkApps_app. simp rho.
destruct l; simpl; auto. now simp rho.
Qed.
Lemma rho_app_construct Γ c u i l :
rho Γ (mkApps (tConstruct c u i) l) =
mkApps (tConstruct c u i) (map (rho Γ) l).
Proof using Type.
induction l using rev_ind; autorewrite with rho; auto.
simpl. rewrite mkApps_app. simp rho.
unshelve erewrite view_lambda_fix_app_other. simpl.
clear; induction l using rev_ind; simpl; auto.
rewrite mkApps_app. simpl. apply IHl.
simp rho. rewrite IHl. now rewrite map_app mkApps_app.
Qed.
Hint Rewrite rho_app_construct : rho.
Lemma rho_app_cofix Γ mfix idx l :
rho Γ (mkApps (tCoFix mfix idx) l) =
mkApps (tCoFix (map_fix rho Γ (rho_fix_context Γ mfix) mfix) idx) (map (rho Γ) l).
Proof using Type.
induction l using rev_ind; autorewrite with rho; auto.
simpl. now simp rho. rewrite mkApps_app. simp rho.
unshelve erewrite view_lambda_fix_app_other. simpl.
clear; induction l using rev_ind; simpl; auto.
rewrite mkApps_app. simpl. apply IHl.
simp rho. rewrite IHl. now rewrite map_app mkApps_app.
Qed.
Hint Rewrite rho_app_cofix : rho.
Lemma map_cofix_subst (f : context → term → term)
(f' : context → context → term → term) mfix Γ Γ' :
(∀ n, tCoFix (map (map_def (f Γ) (f' Γ Γ')) mfix) n = f Γ (tCoFix mfix n)) →
cofix_subst (map (map_def (f Γ) (f' Γ Γ')) mfix) =
map (f Γ) (cofix_subst mfix).
Proof using Type.
unfold cofix_subst. intros.
rewrite map_length. generalize (#|mfix|). induction n. simpl. reflexivity.
simpl. rewrite - IHn. f_equal. apply H.
Qed.
Lemma map_cofix_subst' f g mfix :
(∀ n, tCoFix (map (map_def f g) mfix) n = f (tCoFix mfix n)) →
cofix_subst (map (map_def f g) mfix) =
map f (cofix_subst mfix).
Proof using Type.
unfold cofix_subst. intros.
rewrite map_length. generalize (#|mfix|) at 1 2. induction n. simpl. reflexivity.
simpl. rewrite - IHn. f_equal. apply H.
Qed.
Lemma map_fix_subst f g mfix :
(∀ n, tFix (map (map_def f g) mfix) n = f (tFix mfix n)) →
fix_subst (map (map_def f g) mfix) =
map f (fix_subst mfix).
Proof using Type.
unfold fix_subst. intros.
rewrite map_length. generalize (#|mfix|) at 1 2. induction n. simpl. reflexivity.
simpl. rewrite - IHn. f_equal. apply H.
Qed.
Lemma rho_app_fix Γ mfix idx args :
let rhoargs := map (rho Γ) args in
rho Γ (mkApps (tFix mfix idx) args) =
match nth_error mfix idx with
| Some d ⇒
if is_constructor (rarg d) args then
let fn := (subst0 (map (rho Γ) (fix_subst mfix))) (rho (Γ ,,, fold_fix_context rho Γ [] mfix) (dbody d)) in
mkApps fn rhoargs
else mkApps (rho Γ (tFix mfix idx)) rhoargs
| None ⇒ mkApps (rho Γ (tFix mfix idx)) rhoargs
end.
Proof using Type.
induction args using rev_ind; autorewrite with rho.
- intros rhoargs.
destruct nth_error as [d|] eqn:eqfix ⇒ //.
rewrite /is_constructor nth_error_nil //.
- simpl. rewrite map_app /=.
destruct nth_error as [d|] eqn:eqfix ⇒ //.
destruct (is_constructor (rarg d) (args ++ [x])) eqn:isc; simp rho.
× rewrite mkApps_app /=.
autorewrite with rho.
simpl. simp rho. rewrite /unfold_fix.
rewrite /map_fix nth_error_map eqfix /= isc map_fix_subst ?map_app //.
intros n; simp rho. simpl. f_equal; now simp rho.
× rewrite mkApps_app /=.
simp rho. simpl. simp rho.
now rewrite /unfold_fix /map_fix nth_error_map eqfix /= isc map_app.
× rewrite mkApps_app /=. simp rho.
simpl. simp rho.
now rewrite /unfold_fix /map_fix nth_error_map eqfix /= map_app.
Qed.
Inductive rho_fix_spec Γ mfix i l : term → Type :=
| rho_fix_red d :
let fn := (subst0 (map (rho Γ) (fix_subst mfix))) (rho (Γ ,,, rho_fix_context Γ mfix) (dbody d)) in
nth_error mfix i = Some d →
is_constructor (rarg d) l →
rho_fix_spec Γ mfix i l (mkApps fn (map (rho Γ) l))
| rho_fix_stuck :
(match nth_error mfix i with
| None ⇒ true
| Some d ⇒ ~~ is_constructor (rarg d) l
end) →
rho_fix_spec Γ mfix i l (mkApps (rho Γ (tFix mfix i)) (map (rho Γ) l)).
Lemma rho_fix_elim Γ mfix i l :
rho_fix_spec Γ mfix i l (rho Γ (mkApps (tFix mfix i) l)).
Proof using Type.
rewrite rho_app_fix /= /unfold_fix.
case e: nth_error ⇒ [d|] /=.
case isc: is_constructor ⇒ /=.
- eapply (rho_fix_red Γ mfix i l d) ⇒ //.
- apply rho_fix_stuck.
now rewrite e isc.
- apply rho_fix_stuck. now rewrite e /=.
Qed.
Lemma rho_app_case Γ ci p x brs :
rho Γ (tCase ci p x brs) =
let (f, args) := decompose_app x in
let p' := rho_predicate Γ p in
match f with
| tConstruct ind' c u ⇒
if eq_inductive ci.(ci_ind) ind' then
match nth_error brs c with
| Some br ⇒
if eqb #|args| (ci_npar ci + context_assumptions (bcontext br)) then
let args' := map (rho Γ) args in
rho_iota_red Γ p' ci.(ci_npar) args' br
else tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
| None ⇒ tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
end
else tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
| tCoFix mfix idx ⇒
match nth_error mfix idx with
| Some d ⇒
let fn := (subst0 (map (rho Γ) (cofix_subst mfix))) (rho (Γ ,,, fold_fix_context rho Γ [] mfix) (dbody d)) in
tCase ci (rho_predicate Γ p) (mkApps fn (map (rho Γ) args))
(map (rho_br Γ p') brs)
| None ⇒ tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
end
| _ ⇒ tCase ci p' (rho Γ x) (map (rho_br Γ p') brs)
end.
Proof using Type.
autorewrite with rho.
set (app := inspect _).
destruct app as [[f l] eqapp].
rewrite {2}eqapp. autorewrite with rho.
destruct view_construct_cofix; autorewrite with rho.
destruct eq_inductive eqn:eqi; simp rho ⇒ //.
destruct inspect as [[br|] eqnth]; cbv zeta; simp rho; rewrite eqnth //; cbv zeta; simp rho ⇒ //.
simpl; now simp rho.
cbv zeta.
simpl. autorewrite with rho. rewrite /map_fix nth_error_map.
destruct nth_error ⇒ /=. f_equal.
f_equal. rewrite (map_cofix_subst rho (fun x y ⇒ rho (x ,,, y))) //.
intros. autorewrite with rho. simpl. now autorewrite with rho.
reflexivity.
simpl.
autorewrite with rho.
destruct t; simpl in d ⇒ //.
Qed.
Lemma rho_app_proj Γ p x :
rho Γ (tProj p x) =
let (f, args) := decompose_app x in
match f with
| tConstruct ind' 0 u ⇒
if eq_inductive p.(proj_ind) ind' then
match nth_error args (p.(proj_npars) + p.(proj_arg)) with
| Some arg1 ⇒ rho Γ arg1
| None ⇒ tProj p (rho Γ x)
end
else tProj p (rho Γ x)
| tCoFix mfix idx ⇒
match nth_error mfix idx with
| Some d ⇒
let fn := (subst0 (map (rho Γ) (cofix_subst mfix))) (rho (Γ ,,, fold_fix_context rho Γ [] mfix) (dbody d)) in
tProj p (mkApps fn (map (rho Γ) args))
| None ⇒ tProj p (rho Γ x)
end
| _ ⇒ tProj p (rho Γ x)
end.
Proof using Type.
autorewrite with rho.
set (app := inspect _).
destruct app as [[f l] eqapp].
rewrite {2}eqapp. autorewrite with rho.
destruct view_construct0_cofix; autorewrite with rho.
destruct eq_inductive eqn:eqi; simp rho ⇒ //.
set (arg' := inspect _). clearbody arg'.
destruct arg' as [[arg'|] eqarg'];
autorewrite with rho. rewrite eqi.
simp rho in eqarg'. rewrite nth_error_map in eqarg'.
destruct nth_error ⇒ //. now simpl in eqarg'.
simp rho in eqarg'; rewrite nth_error_map in eqarg'.
destruct nth_error ⇒ //.
destruct inspect as [[arg'|] eqarg'] ⇒ //; simp rho.
now rewrite eqi.
simpl. autorewrite with rho.
rewrite /map_fix nth_error_map.
destruct nth_error eqn:nth ⇒ /= //.
f_equal. f_equal. f_equal.
rewrite (map_cofix_subst rho (fun x y ⇒ rho (x ,,, y))) //.
intros. autorewrite with rho. simpl. now autorewrite with rho.
simpl. eapply decompose_app_inv in eqapp.
subst x. destruct t; simpl in d ⇒ //.
now destruct n.
Qed.
Lemma fold_fix_context_rev_mapi {Γ l m} :
fold_fix_context rho Γ l m =
List.rev (mapi (fun (i : nat) (x : def term) ⇒
vass (dname x) ((lift0 (#|l| + i)) (rho Γ (dtype x)))) m) ++ l.
Proof using Type.
unfold mapi.
rewrite rev_mapi.
induction m in l |- ×. simpl. auto.
intros. simpl. rewrite mapi_app. simpl.
rewrite IHm. cbn.
rewrite - app_assoc. simpl. rewrite List.rev_length.
rewrite Nat.add_0_r. rewrite Nat.sub_diag Nat.add_0_r. simpl.
f_equal. apply mapi_ext_size. simpl; intros.
rewrite List.rev_length in H. lia_f_equal.
Qed.
Lemma fold_fix_context_rev {Γ m} :
fold_fix_context rho Γ [] m =
List.rev (mapi (fun (i : nat) (x : def term) ⇒
vass (dname x) (lift0 i (rho Γ (dtype x)))) m).
Proof using Type.
pose proof (@fold_fix_context_rev_mapi Γ [] m).
now rewrite app_nil_r in H.
Qed.
Lemma nth_error_map_fix i f Γ Δ m :
nth_error (map_fix f Γ Δ m) i = option_map (map_def (f Γ) (f (Γ ,,, Δ))) (nth_error m i).
Proof using Type.
now rewrite /map_fix nth_error_map.
Qed.
Lemma fold_fix_context_app Γ l acc acc' :
fold_fix_context rho Γ l (acc ++ acc') =
fold_fix_context rho Γ (fold_fix_context rho Γ l acc) acc'.
Proof using Type.
induction acc in l, acc' |- ×. simpl. auto.
simpl. rewrite IHacc. reflexivity.
Qed.
Definition pres_bodies Γ Δ σ :=
All2i_len
(fun n decl decl' ⇒ (decl_body decl' = option_map (fun x ⇒ x.[⇑^n σ]) (decl_body decl)))
Γ Δ.
Lemma pres_bodies_inst_context Γ σ : pres_bodies Γ (inst_context σ Γ) σ.
Proof using Type.
red; induction Γ. constructor.
rewrite inst_context_snoc. constructor. simpl. reflexivity.
apply IHΓ.
Qed.
Hint Resolve pres_bodies_inst_context : pcuic.
Definition ctxmap (Γ Δ : context) (s : nat → term) :=
∀ x d, nth_error Γ x = Some d →
match decl_body d return Type with
| Some b ⇒
∑ i b', s x = tRel i ∧
option_map decl_body (nth_error Δ i) = Some (Some b') ∧
b'.[↑^(S i)] = b.[↑^(S x) ∘s s]
| None ⇒ True
end.
Lemma All2_prop2_eq_split (Γ Γ' Γ2 Γ2' : context) (A B : Type) (f g : A → term)
(h : A → B) (rel : context → context → term → term → Type) x y :
All2_prop2_eq Γ Γ' Γ2 Γ2' f g h rel x y →
All2 (on_Trel (rel Γ Γ') f) x y ×
All2 (on_Trel (rel Γ2 Γ2') g) x y ×
All2 (on_Trel eq h) x y.
Proof using Type.
induction 1; intuition.
Qed.
Lemma refine_pred Γ Δ t u u' : u = u' → pred1 Σ Γ Δ t u' → pred1 Σ Γ Δ t u.
Proof using Type. now intros →. Qed.
Lemma ctxmap_ext Γ Δ : CMorphisms.Proper (CMorphisms.respectful (pointwise_relation _ eq) iffT) (ctxmap Γ Δ).
Proof using Type.
red. red. intros.
split; intros X.
- intros n d Hn. specialize (X n d Hn).
destruct d as [na [b|] ty]; simpl in *; auto.
destruct X as [i [b' [? ?]]]. ∃ i, b'.
rewrite -H. split; auto.
- intros n d Hn. specialize (X n d Hn).
destruct d as [na [b|] ty]; simpl in *; auto.
destruct X as [i [b' [? ?]]]. ∃ i, b'.
rewrite H. split; auto.
Qed.
Lemma Up_ctxmap Γ Δ c c' σ :
ctxmap Γ Δ σ →
(decl_body c' = option_map (fun x ⇒ x.[σ]) (decl_body c)) →
ctxmap (Γ ,, c) (Δ ,, c') (⇑ σ).
Proof using Type.
intros.
intros x d Hnth.
destruct x; simpl in *; noconf Hnth.
destruct c as [na [b|] ty]; simpl; auto.
∃ 0. eexists. repeat split; eauto. simpl in H. simpl. now rewrite H.
now autorewrite with sigma.
specialize (X _ _ Hnth). destruct decl_body; auto.
destruct X as [i [b' [? [? ?]]]]; auto.
∃ (S i), b'. simpl. repeat split; auto.
unfold subst_compose. now rewrite H0.
autorewrite with sigma in H2 |- ×.
rewrite -subst_compose_assoc.
rewrite -subst_compose_assoc.
rewrite -subst_compose_assoc.
rewrite -inst_assoc. rewrite H2.
now autorewrite with sigma.
Qed.
Lemma Upn_ctxmap Γ Δ Γ' Δ' σ :
pres_bodies Γ' Δ' σ →
ctxmap Γ Δ σ →
ctxmap (Γ ,,, Γ') (Δ ,,, Δ') (⇑^#|Γ'| σ).
Proof using Type.
induction 1. simpl. intros.
eapply ctxmap_ext. rewrite Upn_0. reflexivity. apply X.
simpl. intros Hσ.
eapply ctxmap_ext. now sigma.
eapply Up_ctxmap; eauto.
Qed.
Hint Resolve Upn_ctxmap : pcuic.
Lemma inst_ctxmap Γ Δ Γ' σ :
ctxmap Γ Δ σ →
ctxmap (Γ ,,, Γ') (Δ ,,, inst_context σ Γ') (⇑^#|Γ'| σ).
Proof using Type.
intros cmap.
apply Upn_ctxmap ⇒ //.
apply pres_bodies_inst_context.
Qed.
Hint Resolve inst_ctxmap : pcuic.
Lemma inst_ctxmap_up Γ Δ Γ' σ :
ctxmap Γ Δ σ →
ctxmap (Γ ,,, Γ') (Δ ,,, inst_context σ Γ') (up #|Γ'| σ).
Proof using Type.
intros cmap.
eapply ctxmap_ext. rewrite up_Upn. reflexivity.
now apply inst_ctxmap.
Qed.
Hint Resolve inst_ctxmap_up : pcuic.
Untyped renamings
Definition renaming Γ Δ r :=
∀ x, match nth_error Γ x with
| Some d ⇒
match decl_body d return Prop with
| Some b ⇒
∃ b', option_map decl_body (nth_error Δ (r x)) = Some (Some b') ∧
b'.[↑^(S (r x))] = b.[↑^(S x) ∘s ren r]
| None ⇒ option_map decl_body (nth_error Δ (r x)) = Some None
end
| None ⇒ nth_error Δ (r x) = None
end.
Instance renaming_ext Γ Δ : Morphisms.Proper (`=1` ==> iff)%signature (renaming Γ Δ).
Proof using Type.
red. red. intros.
split; intros.
- intros n. specialize (H0 n).
destruct nth_error; auto.
destruct c as [na [b|] ty]; simpl in *; auto.
destruct H0 as [b' [Heq Heq']]; auto. ∃ b'. rewrite -(H n).
intuition auto. now rewrite Heq' H. now rewrite -H.
now rewrite -H.
- intros n. specialize (H0 n).
destruct nth_error; auto.
destruct c as [na [b|] ty]; simpl in *; auto.
destruct H0 as [b' [Heq Heq']]; auto. ∃ b'. rewrite (H n).
intuition auto. now rewrite Heq' H. now rewrite H.
now rewrite H.
Qed.
Lemma shiftn1_renaming Γ Δ c c' r :
renaming Γ Δ r →
(decl_body c' = option_map (fun x ⇒ x.[ren r]) (decl_body c)) →
renaming (c :: Γ) (c' :: Δ) (shiftn 1 r).
Proof using Type.
intros.
red.
destruct x. simpl.
destruct (decl_body c) eqn:Heq; rewrite H0; auto. eexists. simpl. split; eauto.
sigma. rewrite -ren_shiftn. now sigma.
simpl.
rewrite Nat.sub_0_r. specialize (H x).
destruct nth_error eqn:Heq.
destruct c0 as [na [b|] ty]; cbn in ×.
destruct H as [b' [Hb Heq']].
∃ b'; intuition auto.
rewrite -ren_shiftn. autorewrite with sigma in Heq' |- ×.
rewrite Nat.sub_0_r.
rewrite -?subst_compose_assoc -inst_assoc.
rewrite -[b.[_]]inst_assoc. rewrite Heq'.
now sigma.
auto. auto.
Qed.
Lemma shift_renaming Γ Δ ctx ctx' r :
All2i_len (fun n decl decl' ⇒ (decl_body decl' = option_map (fun x ⇒ x.[ren (shiftn n r)]) (decl_body decl)))
ctx ctx' →
renaming Γ Δ r →
renaming (Γ ,,, ctx) (Δ ,,, ctx') (shiftn #|ctx| r).
Proof using Type.
induction 1.
intros. rewrite shiftn0. apply H.
intros. simpl.
rewrite shiftnS. apply shiftn1_renaming. apply IHX; try lia. auto.
apply r0.
Qed.
Lemma shiftn_renaming Γ Δ ctx r :
renaming Γ Δ r →
renaming (Γ ,,, ctx) (Δ ,,, rename_context r ctx) (shiftn #|ctx| r).
Proof using Type.
induction ctx; simpl; auto.
× intros. rewrite shiftn0. apply H.
× intros. simpl.
rewrite shiftnS rename_context_snoc /=.
apply shiftn1_renaming. now apply IHctx.
simpl. destruct (decl_body a) ⇒ /= //.
now sigma.
Qed.
Lemma shiftn_renaming_eq Γ Δ ctx r k :
renaming Γ Δ r →
k = #|ctx| →
renaming (Γ ,,, ctx) (Δ ,,, rename_context r ctx) (shiftn k r).
Proof using Type.
now intros hr ->; apply shiftn_renaming.
Qed.
Lemma renaming_shift_rho_fix_context:
∀ (mfix : mfixpoint term) (Γ Δ : list context_decl) (r : nat → nat),
renaming Γ Δ r →
renaming (Γ ,,, rho_fix_context Γ mfix)
(Δ ,,, rho_fix_context Δ (map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix))
(shiftn #|mfix| r).
Proof using Type.
intros mfix Γ Δ r Hr.
rewrite -{2}(rho_fix_context_length Γ mfix).
eapply shift_renaming; auto.
rewrite /rho_fix_context !fold_fix_context_rev.
apply All2i_rev_ctx_inv, All2i_mapi.
simpl. apply All2i_trivial; auto. now rewrite map_length.
Qed.
Lemma map_fix_rho_rename:
∀ (mfix : mfixpoint term) (i : nat) (l : list term),
(∀ t' : term, depth t' < depth (mkApps (tFix mfix i) l)
→ ∀ (Γ Δ : list context_decl) (r : nat → nat) (P : nat → bool),
renaming Γ Δ r →
on_free_vars P t' →
rename r (rho Γ t') = rho Δ (rename r t'))
→ ∀ (Γ Δ : list context_decl) (r : nat → nat) P n,
renaming Γ Δ r →
on_free_vars P (tFix mfix n) →
map (map_def (rename r) (rename (shiftn #|mfix| r)))
(map_fix rho Γ (fold_fix_context rho Γ [] mfix) mfix) =
map_fix rho Δ (fold_fix_context rho Δ [] (map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix))
(map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix).
Proof using Type.
intros mfix i l H Γ Δ r P H2 Hr onfix. inv_on_free_vars.
rewrite /map_fix !map_map_compose !compose_map_def.
apply map_ext_in ⇒ d hin.
have hdepth := mfixpoint_depth_In hin.
eapply All_In in onfix as []; tea.
move/andP: H0 ⇒ [onty onbod].
apply map_def_eq_spec.
- specialize (H (dtype d)).
forward H. move: (depth_mkApps (tFix mfix i) l). simpl. lia.
now eapply H; tea.
- specialize (H (dbody d)).
forward H. move: (depth_mkApps (tFix mfix i) l). simpl. lia.
eapply H. eapply renaming_shift_rho_fix_context; tea. tea.
Qed.
Lemma All_IH {A depth} (l : list A) k (P : A → Type) :
list_depth_gen depth l < k →
(∀ x, depth x < k → P x) →
All P l.
Proof using Type.
induction l in k |- ×. constructor.
simpl. intros Hk IH.
constructor. apply IH. lia.
eapply (IHl k). lia. intros x sx.
apply IH. lia.
Qed.
Lemma All_IH' {A depth B depth'} (f : A → B) (l : list A) k (P : B → Type) :
list_depth_gen depth l < k →
(∀ x, depth' (f x) ≤ depth x) →
(∀ x, depth' x < k → P x) →
All (fun x ⇒ P (f x)) l.
Proof using Type.
induction l in k |- ×. constructor.
simpl. intros Hk Hs IH.
constructor. apply IH. specialize (Hs a). lia.
eapply (IHl k). lia. apply Hs.
apply IH.
Qed.
Transparent fold_context.
Lemma fold_context_mapi_context f g (Γ : context) :
fold_context f (mapi_context g Γ) =
fold_context (fun Γ ⇒ f Γ ∘ map_decl (g #|Γ|)) Γ.
Proof using Type.
induction Γ. simpl. auto.
simpl. f_equal; auto.
now rewrite -IHΓ; len.
Qed.
Lemma mapi_context_fold_context f g (Γ : context) :
mapi_context f (fold_context (fun Γ ⇒ g (mapi_context f Γ)) Γ) =
fold_context (fun Γ ⇒ map_decl (f #|Γ|) ∘ g Γ) Γ.
Proof using Type.
induction Γ. simpl. auto.
simpl. f_equal; auto. len.
now rewrite -IHΓ.
Qed.
Lemma onctx_fold_context_term P Γ (f g : context → term → term) :
onctx P Γ →
(∀ Γ x,
onctx P Γ →
fold_context_term f Γ = fold_context_term g Γ →
P x → f (fold_context_term f Γ) x = g (fold_context_term g Γ) x) →
fold_context_term f Γ = fold_context_term g Γ.
Proof using Type.
intros onc Hp. induction onc; simpl; auto.
f_equal; auto.
eapply map_decl_eq_spec; tea.
intros. now apply Hp.
Qed.
Lemma rho_ctx_rename Γ r :
fold_context_term (fun Γ' x ⇒ rho Γ' (rename (shiftn #|Γ'| r) x)) Γ =
rho_ctx (rename_context r Γ).
Proof using Type.
rewrite /rename_context.
rewrite -mapi_context_fold.
rewrite fold_context_mapi_context.
now setoid_rewrite compose_map_decl.
Qed.
Lemma rename_rho_ctx {r ctx} :
onctx
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat),
renaming Γ Δ r → rename r (rho Γ t) = rho Δ (rename r t))
ctx →
rename_context r (rho_ctx ctx) =
rho_ctx (rename_context r ctx).
Proof using Type.
intros onc.
rewrite /rename_context - !mapi_context_fold.
induction onc; simpl; eauto.
f_equal; eauto.
rewrite !compose_map_decl.
eapply map_decl_eq_spec; tea ⇒ /= t.
intros IH.
erewrite IH.
1: now rewrite -IHonc; len.
rewrite mapi_context_fold.
rewrite -/(rename_context r (rho_ctx l)).
epose proof (shiftn_renaming [] [] (rho_ctx l) r).
rewrite !app_context_nil_l in H. eapply H.
now intros i; rewrite !nth_error_nil.
Qed.
Lemma ondecl_map (P : term → Type) f (d : context_decl) :
ondecl P (map_decl f d) →
ondecl (fun x ⇒ P (f x)) d.
Proof using Type.
destruct d ⇒ /=; rewrite /ondecl /=.
destruct decl_body ⇒ /= //.
Qed.
Lemma rename_rho_ctx_over {ctx} {Γ Δ r P p} :
renaming Γ Δ r →
forallb (on_free_vars P) (pparams p) →
test_context_k (fun k : nat ⇒ on_free_vars (closedP k xpredT)) #|p.(pparams)| ctx →
onctx
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t))
(inst_case_context p.(pparams) p.(puinst) ctx) →
rename_context r (rho_ctx_over Γ (inst_case_context p.(pparams) p.(puinst) ctx)) =
rho_ctx_over Δ (rename_context r (inst_case_context p.(pparams) p.(puinst) ctx)).
Proof using Type.
rewrite /inst_case_context.
intros Hr onpars clc onc.
rewrite /rename_context - !mapi_context_fold.
induction ctx; simpl; eauto.
move: clc ⇒ /= /andP [] clc clx.
specialize (IHctx clc).
move: onc. rewrite /inst_case_context subst_instance_cons subst_context_snoc /= ⇒ onc.
depelim onc.
f_equal; eauto.
rewrite !compose_map_decl.
eapply ondecl_map in o.
eapply ondecl_map in o.
eapply map_decl_eqP_spec; tea ⇒ t.
cbn; intros IH onfv.
rewrite Nat.add_0_r; len. len in IH.
erewrite <-IH ⇒ //. specialize (IHctx onc).
rewrite -IHctx.
rewrite mapi_context_fold.
rewrite -/(rename_context _ _).
relativize #|ctx|.
apply (shiftn_renaming _ _ (rho_ctx_over Γ _) r Hr). now len.
eapply on_free_vars_subst_gen.
2:erewrite on_free_vars_subst_instance; tea.
rewrite /on_free_vars_terms.
solve_all.
Qed.
Lemma context_assumptions_fold_context_term f Γ :
context_assumptions (fold_context_term f Γ) = context_assumptions Γ.
Proof using Type.
induction Γ ⇒ /= //.
destruct (decl_body a) ⇒ /= //; f_equal ⇒ //.
Qed.
Hint Rewrite context_assumptions_fold_context_term : len.
Lemma mapi_context_rename r Γ :
mapi_context (fun k : nat ⇒ rename (shiftn k r)) Γ =
rename_context r Γ.
Proof using Type. rewrite mapi_context_fold //. Qed.
Lemma inspect_nth_error_rename {r brs u res} (eq : nth_error brs u = res) :
∑ prf,
inspect (nth_error (rename_branches r brs) u) =
exist (option_map (rename_branch r) res) prf.
Proof using Type. simpl.
rewrite nth_error_map eq. now ∃ eq_refl.
Qed.
Lemma pres_bodies_rename Γ Δ r ctx :
renaming Γ Δ r →
All2i_len
(fun (n : nat) (decl decl' : context_decl) ⇒
decl_body decl' =
option_map (fun x : term ⇒ x.[ren (shiftn n r)]) (decl_body decl))
(rho_ctx_over Γ ctx)
(rename_context r (rho_ctx_over Γ ctx)).
Proof using Type.
intros Hr.
induction ctx; simpl; auto.
- constructor.
- rewrite rename_context_snoc. constructor; auto.
destruct a as [na [b|] ty] ⇒ /= //.
f_equal. now sigma.
Qed.
Lemma pres_bodies_rename' Γ Δ r ctx :
renaming Γ Δ r →
All2i_len
(fun (n : nat) (decl decl' : context_decl) ⇒
decl_body decl' =
option_map (fun x : term ⇒ x.[ren (shiftn n r)]) (decl_body decl))
ctx
(rename_context r ctx).
Proof using Type.
intros Hr.
induction ctx; simpl; auto.
- constructor.
- rewrite rename_context_snoc. constructor; auto.
destruct a as [na [b|] ty] ⇒ /= //.
f_equal. now sigma.
Qed.
Lemma rho_rename_pred Γ Δ p r P :
renaming Γ Δ r →
forallb (on_free_vars P) (pparams p) →
on_free_vars (shiftnP #|pcontext p| P) (preturn p) →
test_context_k (fun k : nat ⇒ PCUICOnFreeVars.on_free_vars (PCUICOnFreeVars.closedP k xpredT))
#|pparams p| (pcontext p) →
CasePredProp_depth
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t)) p →
rename_predicate r (rho_predicate Γ p) = rho_predicate Δ (rename_predicate r p).
Proof using Type.
intros Hr onpars onret onp [? [? ?]].
rewrite /rename_predicate /rho_predicate; cbn. f_equal. solve_all.
eapply e. relativize #|pcontext p|; [eapply shift_renaming|]; tea; len ⇒ //.
assert ((map (rho Δ) (map (rename r) (pparams p)) = map (rename r) (map (rho Γ) (pparams p)))).
solve_all. erewrite b; trea.
rewrite H.
rewrite -rename_inst_case_context_wf //. len ⇒ //.
rewrite /id. eapply pres_bodies_rename' ⇒ //; tea. tea.
Qed.
Lemma rename_rho_iota_red Γ Δ r p P pars args brs br c :
renaming Γ Δ r →
#|args| = pars + context_assumptions br.(bcontext) →
forallb (on_free_vars P) (pparams p) →
closedn_ctx #|pparams p| br.(bcontext) →
on_free_vars (shiftnP #|bcontext br| P) (bbody br) →
test_context_k (fun k : nat ⇒ on_free_vars (closedP k xpredT)) #|pparams p| (bcontext br) →
CasePredProp_depth
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t)) p →
CaseBrsProp_depth p
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t)) brs →
nth_error brs c = Some br →
rename r (rho_iota_red Γ (rho_predicate Γ p) pars args br) =
rho_iota_red Δ (rho_predicate Δ (rename_predicate r p)) pars (map (rename r) args) (rename_branch r br).
Proof using Type.
intros Hr hlen hpars hlen' hbod hbr hpred hbrs hnth.
unfold rho_iota_red.
rewrite rename_subst0 map_rev map_skipn. f_equal.
rewrite List.rev_length /expand_lets /expand_lets_k.
rewrite rename_subst0. len.
rewrite skipn_length; try lia.
rewrite hlen.
replace (pars + context_assumptions (bcontext br) - pars)
with (context_assumptions (bcontext br)) by lia.
rewrite shiftn_add Nat.add_comm rename_shiftnk.
relativize (context_assumptions _); [erewrite rename_extended_subst|now len].
assert ((map (rho Δ) (map (rename r) (pparams p)) = map (rename r) (map (rho Γ) (pparams p)))).
destruct hpred as [? _].
solve_all. erewrite b; trea.
f_equal. f_equal. rewrite /inst_case_branch_context /= /id.
rewrite H.
rewrite -rename_inst_case_context_wf // /id. len ⇒ //.
eapply All_nth_error in hbrs as []; tea.
f_equal.
rewrite /inst_case_branch_context. cbn.
erewrite e; trea.
relativize #|bcontext br|; [eapply shift_renaming|]; tea; len ⇒ //.
rewrite H -rename_inst_case_context_wf //. now len.
rewrite /id. now eapply pres_bodies_rename'.
Qed.
Lemma rho_rename P Γ Δ r t :
renaming Γ Δ r →
on_free_vars P t →
rename r (rho Γ t) = rho Δ (rename r t).
Proof using cf Σ wfΣ.
revert t Γ Δ r P.
refine (PCUICDepth.term_ind_depth_app _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);
intros until Γ; intros Δ r P Hr ont; try subst Γ; try rename Γ0 into Γ; repeat inv_on_free_vars.
all:auto 2.
- red in Hr. simpl.
specialize (Hr n).
destruct (nth_error Γ n) as [c|] eqn:Heq.
-- simp rho. rewrite Heq /=.
destruct decl_body eqn:Heq''.
simp rho. rewrite lift0_inst.
destruct Hr as [b' [-> Hb']] ⇒ /=.
rewrite lift0_inst.
sigma. autorewrite with sigma in ×. now rewrite <- Hb'.
simpl.
rewrite Hr. simpl. reflexivity.
-- simp rho. rewrite Heq Hr //.
- simpl; simp rho. simpl. f_equal; rewrite !map_map_compose. solve_all.
- simpl; simp rho; simpl. erewrite H; eauto. f_equal.
erewrite H0; eauto.
simpl. eapply (shift_renaming _ _ [_] [_]). repeat constructor. auto.
- simpl; simp rho; simpl. erewrite H; eauto.
erewrite H0; eauto.
simpl. eapply (shift_renaming _ _ [_] [_]). repeat constructor. auto.
- simpl; simp rho; simpl. rewrite /subst1 subst_inst.
specialize (H _ _ _ _ Hr p). specialize (H0 _ _ _ _ Hr p0).
autorewrite with sigma in H, H0, H1.
erewrite <- (H1 ((vdef n (rho Γ t) (rho Γ t0) :: Γ))).
2:{ eapply (shift_renaming _ _ [_] [_]). repeat constructor. simpl.
sigma. now rewrite -H. auto. }
sigma. apply inst_ext. rewrite H.
rewrite -ren_shiftn. sigma. unfold Up. now sigma. tea.
- rewrite rho_equation_8.
destruct (view_lambda_fix_app t u); try inv_on_free_vars.
+
rename b into onfvb. rename a into onfvfix. rename a0 into a.
simpl; simp rho. rewrite rename_mkApps. cbn [rename].
assert (eqargs : map (rename r) (map (rho Γ) (l ++ [a])) =
map (rho Δ) (map (rename r) (l ++ [a]))).
{ rewrite !map_map_compose !map_app. f_equal ⇒ /= //.
2:{ f_equal. now eapply H1. }
unshelve epose proof (All_IH l _ _ _ H); simpl; eauto.
pose proof (depth_mkApps (tFix mfix i) l). lia. solve_all. }
destruct (rho_fix_elim Γ mfix i (l ++ [a])).
simpl. simp rho.
rewrite /unfold_fix /map_fix nth_error_map e /= i0.
simp rho; rewrite /map_fix !nth_error_map /= e /=.
move: i0; rewrite /is_constructor -(map_app (rename r) l [a]) nth_error_map.
destruct (nth_error_spec (l ++ [a]) (rarg d)) ⇒ /= //.
rewrite -isConstruct_app_rename ⇒ → //.
rewrite rename_mkApps.
f_equal; auto.
assert (Hbod: ∀ (Γ Δ : list context_decl) (r : nat → nat),
renaming Γ Δ r → rename r (rho Γ (dbody d)) = rho Δ (rename r (dbody d))).
{ pose proof (H (dbody d)) as Hbod.
forward Hbod.
{ simpl; move: (depth_mkApps (tFix mfix i) l). simpl.
eapply mfixpoint_depth_nth_error in e. lia. }
auto. intros. eapply Hbod; tea.
inv_on_free_vars. eapply All_nth_error in onfvfix; tea.
now move/andP: onfvfix. }
assert (Hren : renaming (Γ ,,, rho_fix_context Γ mfix)
(Δ ,,, rho_fix_context Δ (map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix))
(shiftn #|mfix| r)).
now apply renaming_shift_rho_fix_context.
specialize (Hbod _ _ _ Hren).
rewrite -Hbod.
rewrite !subst_inst.
{ sigma. eapply inst_ext.
rewrite -{1}(rename_inst r).
rewrite -ren_shiftn. sigma.
rewrite Upn_comp ?map_length ?fix_subst_length ?map_length //.
apply subst_consn_proper ⇒ //.
rewrite map_fix_subst //.
intros n. simp rho. simpl. simp rho.
reflexivity.
clear -H Hr Hren onfvfix.
unfold fix_subst. autorewrite with len. generalize #|mfix| at 1 4.
induction n; simpl; auto.
rewrite IHn. clear IHn. f_equal; auto.
specialize (H (tFix mfix n)) as Hbod.
forward Hbod.
{ simpl. move: (depth_mkApps (tFix mfix i) l). simpl. lia. }
simp rho. simpl. simp rho.
specialize (Hbod _ _ _ _ Hr onfvfix).
simpl in Hbod. simp rho in Hbod.
simpl in Hbod; simp rho in Hbod.
rewrite -rename_inst.
rewrite ren_shiftn -(rename_inst (shiftn _ r)).
rewrite Hbod. f_equal.
rewrite /map_fix !map_map_compose. apply map_ext.
intros []; unfold map_def; cbn. f_equal.
f_equal. 2:rewrite -up_Upn ren_shiftn. 2:now sigma.
f_equal. f_equal.
apply map_ext ⇒ x. f_equal.
now rewrite -up_Upn ren_shiftn; sigma. }
simp rho; simpl; simp rho.
rewrite /unfold_fix /map_fix !nth_error_map.
destruct (nth_error mfix i) eqn:hfix ⇒ /=.
assert(is_constructor (rarg d) (l ++ [a]) = false).
red in i0; unfold negb in i0.
destruct is_constructor; auto.
rewrite H2.
rewrite -(map_app (rename r) l [a]) -is_constructor_rename H2 //.
rewrite rename_mkApps.
f_equal. simpl. f_equal.
autorewrite with len.
eapply (map_fix_rho_rename mfix i l); eauto.
intros. eapply H; eauto. rewrite /=. lia.
apply eqargs.
rewrite rename_mkApps. f_equal; auto.
2:{ now rewrite -(map_app (rename r) _ [_]). }
simpl. f_equal. autorewrite with len.
eapply (map_fix_rho_rename mfix i l); eauto.
intros; eapply H; tea; simpl; try lia.
+
inv_on_free_vars. rename a0 into arg. rename b0 into body.
pose proof (rho_app_lambda' Γ na ty body (l ++ [arg])).
simp rho in H2. rewrite mkApps_app in H2.
simpl in H2. simp rho in H2. rewrite {}H2.
simpl.
rewrite rename_mkApps. simpl.
rewrite tApp_mkApps -mkApps_app.
rewrite -(map_app (rename r) _ [_]).
rewrite rho_app_lambda'.
simpl.
assert (All (fun x ⇒ rename r (rho Γ x) = rho Δ (rename r x)) (l ++ [arg])).
{ apply All_app_inv. 2:constructor; auto.
unshelve epose proof (All_IH l _ _ _ H); simpl; eauto.
move: (depth_mkApps (tLambda na ty body) l). lia. solve_all.
eapply H1; tea. }
remember (l ++ [arg]) as args.
destruct args; simpl; simp rho.
{ apply (f_equal (@length _)) in Heqargs. simpl in Heqargs.
autorewrite with len in Heqargs. simpl in Heqargs. lia. }
rewrite rename_inst /subst1 subst_inst.
simpl in H.
specialize (H body).
forward H.
{ move: (depth_mkApps (tLambda na ty body) l) ⇒ /=. lia. }
rewrite inst_mkApps.
specialize (H (vass na (rho Γ ty) :: Γ) (vass na (rho Δ ty.[ren r]) :: Δ) (shiftn 1 r) (shiftnP 1 P)).
forward H. eapply shiftn1_renaming; auto.
sigma. depelim X.
autorewrite with sigma in H, e, X.
f_equal.
rewrite -H //. sigma. apply inst_ext.
rewrite e.
rewrite -ren_shiftn. sigma.
unfold Up. now sigma.
rewrite !map_map_compose. solve_all.
now autorewrite with sigma in H.
+ simpl.
simp rho. pose proof (isFixLambda_app_rename r _ i).
simpl in H2. rewrite (view_lambda_fix_app_other (rename r t) (rename r a0) H2). simpl.
erewrite H0, H1; eauto.
-
simpl; simp rho; simpl.
case e: lookup_env ⇒ [[decl|decl]|] //; simp rho.
case eb: cst_body ⇒ [b|] //; simp rho.
rewrite rename_inst inst_closed0 //.
apply declared_decl_closed in e ⇒ //.
hnf in e. rewrite eb in e. rewrite closedn_subst_instance; auto.
now move/andP: e ⇒ [-> _].
-
simpl; simp rho.
destruct inspect as [[f a] decapp].
destruct inspect as [[f' a'] decapp'].
epose proof (decompose_app_rename decapp).
rewrite → decapp' in H0. noconf H0.
simpl.
assert (map (rename_branch r) (map (rho_br Γ (rho_predicate Γ p)) brs) =
(map (rho_br Δ (rho_predicate Δ (rename_predicate r p))) (map (rename_branch r) brs))).
{ destruct X as [? [? ?]]; red in X0.
simpl in ×. rewrite !map_map_compose /rename_branch
/PCUICSigmaCalculus.rename_branch /rho_br /=.
simpl. solve_all. f_equal.
rewrite /inst_case_branch_context /=.
eapply All_prod_inv in p0 as [].
unshelve epose proof (rename_rho_ctx_over Hr _ _ a2). shelve. solve_all. solve_all.
erewrite b0. reflexivity.
assert (map (rho Δ) (map (rename r) (pparams p)) = (map (rename r) (map (rho Γ) ((pparams p))))).
solve_all. erewrite a0; trea. rewrite H3.
rewrite - rename_inst_case_context_wf //.
len ⇒ //.
eapply shiftn_renaming_eq ⇒ //. now len. tea. }
simpl.
destruct X as [? [? ?]]; cbn in ×. red in X0.
destruct view_construct_cofix; simpl; simp rho.
× destruct (eq_inductive ci ind) eqn:eqi.
simp rho.
destruct inspect as [[br|] eqbr]=> //; simp rho;
destruct (inspect_nth_error_rename (r:=r) eqbr) as [prf ->]; simp rho.
cbv zeta. simp rho.
cbn -[eqb]. autorewrite with len.
case: eqb_specT ⇒ // hlen.
+ erewrite rename_rho_iota_red; tea ⇒ //.
f_equal.
pose proof (decompose_app_inv decapp). subst t.
specialize (H _ _ _ _ Hr p3).
rewrite /= !rho_app_construct /= !rename_mkApps in H.
simpl in H. rewrite rho_app_construct in H.
apply mkApps_eq_inj in H as [_ Heq] ⇒ //.
len; eauto.
{ cbn. len. eapply nth_error_forallb in p4; tea.
move: p4 ⇒ /= /andP[]. rewrite test_context_k_closed_on_free_vars_ctx.
now rewrite closedn_ctx_on_free_vars. }
eapply nth_error_forallb in p4; tea. cbn in p4.
now move/andP: p4.
eapply nth_error_forallb in p4; tea. cbn in p4.
now move/andP: p4.
+ simp rho. simpl. f_equal; auto.
erewrite → rho_rename_pred; tea ⇒ //.
erewrite H; trea.
+ simp rho. simpl. f_equal; eauto.
erewrite → rho_rename_pred; tea ⇒ //.
simp rho.
+ simp rho. simpl. simp rho. f_equal; eauto.
erewrite → rho_rename_pred; tea ⇒ //.
× simpl; simp rho.
rewrite /map_fix !map_map_compose.
rewrite /unfold_cofix !nth_error_map.
apply decompose_app_inv in decapp. subst t.
specialize (H _ _ _ _ Hr p3).
simp rho in H; rewrite !rename_mkApps /= in H. simp rho in H.
eapply mkApps_eq_inj in H as [Heqcof Heq] ⇒ //.
noconf Heqcof. simpl in H.
autorewrite with len in H.
rewrite /map_fix !map_map_compose in H.
case efix: (nth_error mfix idx) ⇒ [d|] /= //.
+ rewrite rename_mkApps !map_map_compose compose_map_def.
f_equal. erewrite → rho_rename_pred; tea ⇒ //.
rewrite !map_map_compose in Heq.
f_equal ⇒ //.
rewrite !subst_inst. sigma.
apply map_eq_inj in H.
epose proof (nth_error_all efix H). cbn in H1.
simpl in H1. apply (f_equal dbody) in H1.
simpl in H1. rewrite -(rename_inst (shiftn _ r)) -(rename_inst r).
rewrite -H1. sigma.
apply inst_ext.
rewrite -ren_shiftn. sigma.
(rewrite Upn_comp ?map_length ?fix_subst_length ?map_length //;
try now autorewrite with len); [].
apply subst_consn_proper ⇒ //.
rewrite map_cofix_subst' //.
intros n'; simp rho. simpl; f_equal. now simp rho.
rewrite map_cofix_subst' //.
simpl. move⇒ n'; f_equal. simp rho; simpl; simp rho.
f_equal. rewrite /map_fix.
rewrite !map_map_compose !compose_map_def.
apply map_ext ⇒ x; apply map_def_eq_spec ⇒ //.
rewrite !map_map_compose.
unfold cofix_subst. generalize #|mfix|.
clear -H.
induction n; simpl; auto. f_equal; auto.
simp rho. simpl. simp rho. f_equal.
rewrite /map_fix !map_map_compose. autorewrite with len.
solve_all.
apply (f_equal dtype) in H. simpl in H.
now sigma; sigma in H. sigma.
rewrite -ren_shiftn. rewrite up_Upn.
apply (f_equal dbody) in H. simpl in H.
sigma in H. now rewrite <-ren_shiftn, up_Upn in H.
now rewrite !map_map_compose in H0.
+ rewrite map_map_compose. f_equal; auto.
{ erewrite → rho_rename_pred; tea ⇒ //. }
{ simp rho. rewrite !rename_mkApps /= !map_map_compose !compose_map_def /=.
simp rho. f_equal. f_equal.
rewrite /map_fix map_map_compose. rewrite -H.
autorewrite with len. reflexivity.
now rewrite -Heq !map_map_compose. }
now rewrite !map_map_compose in H0.
× pose proof (construct_cofix_rename r t0 d).
destruct (view_construct_cofix (rename r t0)); simpl in H1 ⇒ //.
simp rho. simpl.
f_equal; auto.
erewrite rho_rename_pred; tea⇒ //.
now rewrite !map_map_compose in H0. simp rho.
-
simpl.
rewrite !rho_app_proj.
destruct decompose_app as [f a] eqn:decapp.
erewrite (decompose_app_rename decapp).
erewrite <-H; eauto.
apply decompose_app_inv in decapp. subst t.
specialize (H _ _ _ _ Hr ont).
rewrite rename_mkApps in H.
destruct f; simpl; auto.
× destruct n; simpl; auto.
destruct eq_inductive eqn:eqi; simpl; auto.
rewrite nth_error_map.
destruct nth_error eqn:hnth; simpl; auto.
simp rho in H. rewrite rename_mkApps in H.
eapply mkApps_eq_inj in H as [_ Hargs] ⇒ //.
rewrite !map_map_compose in Hargs.
eapply map_eq_inj in Hargs.
apply (nth_error_all hnth Hargs).
× rewrite nth_error_map.
destruct nth_error eqn:hnth; auto.
simpl. rewrite rename_mkApps.
f_equal; auto.
simpl in H; simp rho in H. rewrite rename_mkApps in H.
eapply mkApps_eq_inj in H as [Hcof Hargs] ⇒ //.
f_equal; auto. simpl in Hcof. noconf Hcof. simpl in H.
noconf H.
rewrite /map_fix !map_map_compose in H.
apply map_eq_inj in H.
epose proof (nth_error_all hnth H).
simpl in H0. apply (f_equal dbody) in H0.
simpl in H0. autorewrite with sigma in H0.
rewrite !rename_inst -H0 - !rename_inst.
sigma. autorewrite with len.
apply inst_ext.
rewrite -ren_shiftn. sigma.
(rewrite Upn_comp ?map_length ?fix_subst_length ?map_length //;
try now autorewrite with len); [].
apply subst_consn_proper ⇒ //.
rewrite map_cofix_subst' //.
intros n0. simpl. now rewrite up_Upn.
rewrite !map_map_compose.
unfold cofix_subst. generalize #|mfix|.
clear -H.
induction n; simpl; auto. f_equal; auto.
simp rho. simpl. simp rho. f_equal.
rewrite /map_fix !map_map_compose. autorewrite with len.
eapply All_map_eq, All_impl; tea ⇒ /= //.
intros x.
rewrite !rename_inst ren_shiftn ⇒ <-.
apply map_def_eq_spec; simpl. now sigma. sigma. now len.
-
simpl; simp rho; simpl; simp rho.
f_equal. rewrite /map_fix !map_length !map_map_compose.
red in X0. solve_all.
move/andP: b ⇒ [] onty onbody.
erewrite a0; tea; auto.
move/andP: b ⇒ [] onty onbody.
assert (#|m| = #|fold_fix_context rho Γ [] m|). rewrite fold_fix_context_length /= //.
erewrite <-b0; trea.
rewrite {2}H.
eapply shift_renaming; auto.
clear. generalize #|m|. induction m using rev_ind. simpl. constructor.
intros. rewrite map_app !fold_fix_context_app. simpl. constructor. simpl. reflexivity. apply IHm.
-
simpl; simp rho; simpl; simp rho.
f_equal. rewrite /map_fix !map_length !map_map_compose.
red in X0. solve_all.
move/andP: b ⇒ [] onty onbody.
erewrite a0; tea; auto.
move/andP: b ⇒ [] onty onbody.
assert (#|m| = #|fold_fix_context rho Γ [] m|). rewrite fold_fix_context_length /= //.
erewrite <-b0; trea.
rewrite {2}H.
eapply shift_renaming; auto.
clear. generalize #|m|. induction m using rev_ind. simpl. constructor.
intros. rewrite map_app !fold_fix_context_app. simpl. constructor. simpl. reflexivity. apply IHm; eauto.
Qed.
Lemma rho_lift0 Γ Δ P t :
on_free_vars P t →
lift0 #|Δ| (rho Γ t) = rho (Γ ,,, Δ) (lift0 #|Δ| t).
Proof using wfΣ.
rewrite !lift_rename. eapply rho_rename.
red. intros x. destruct nth_error eqn:Heq.
unfold lift_renaming. simpl. rewrite Nat.add_comm.
rewrite nth_error_app_ge. lia. rewrite Nat.add_sub Heq.
destruct c as [na [b|] ty]; simpl in *; auto.
∃ b. split; eauto.
rewrite -ren_shiftk. rewrite shiftk_compose. reflexivity.
unfold lift_renaming. simpl. rewrite Nat.add_comm.
rewrite nth_error_app_ge. lia. now rewrite Nat.add_sub Heq.
Qed.
Lemma rho_ctx_over_app Γ' Γ Δ :
rho_ctx_over Γ' (Γ ,,, Δ) =
rho_ctx_over Γ' Γ ,,, rho_ctx_over (Γ' ,,, rho_ctx_over Γ' Γ) Δ.
Proof using Type.
induction Δ; simpl; auto.
destruct a as [na [b|] ty]. simpl. f_equal; auto.
now rewrite IHΔ app_context_assoc.
now rewrite IHΔ app_context_assoc.
Qed.
Lemma rho_ctx_app Γ Δ : rho_ctx (Γ ,,, Δ) = rho_ctx Γ ,,, rho_ctx_over (rho_ctx Γ) Δ.
Proof using Type.
induction Δ; simpl; auto.
destruct a as [na [b|] ty]; simpl; f_equal; auto.
now rewrite -IHΔ.
now rewrite -IHΔ.
Qed.
Lemma fold_fix_context_over_acc p Γ m acc :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
rho_ctx_over (Γ ,,, acc)
(List.rev (mapi_rec (fun (i : nat) (d : def term) ⇒ vass (dname d) ((lift0 i) (dtype d))) m #|acc|))
++ acc =
fold_fix_context rho Γ acc m.
Proof using wfΣ.
generalize #|m| ⇒ n.
induction m in Γ, acc |- *; simpl; auto.
move/andP ⇒ [] ha hm.
rewrite rho_ctx_over_app. simpl.
unfold app_context. unfold app_context in IHm.
erewrite <- IHm ⇒ //.
rewrite - app_assoc. cbn. f_equal.
apply fold_context_Proper. intros Δ d.
apply map_decl_ext ⇒ x.
rewrite (rho_lift0 _ _ p); auto. now move/andP: ha.
repeat f_equal. rewrite (rho_lift0 _ _ p); auto.
now move/andP: ha.
Qed.
Lemma fold_fix_context_rho_ctx p Γ m :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
rho_ctx_over Γ (fix_context m) =
fold_fix_context rho Γ [] m.
Proof using wfΣ.
intros hm.
rewrite <- (fold_fix_context_over_acc p); now rewrite ?app_nil_r.
Qed.
Definition fold_fix_context_alt Γ m :=
mapi (fun k def ⇒ vass def.(dname) (lift0 k (rho Γ def.(dtype)))) m.
Lemma fix_context_fold p Γ m :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
fix_context (map (map_def (rho Γ)
(rho (Γ ,,, rho_ctx_over Γ (fix_context m)))) m) =
rho_ctx_over Γ (fix_context m).
Proof using wfΣ.
intros hm.
unfold fix_context. rewrite mapi_map. simpl.
rewrite (fold_fix_context_rho_ctx p); auto.
rewrite fold_fix_context_rev_mapi. simpl.
now rewrite app_nil_r.
Qed.
Lemma fix_context_map_fix p Γ mfix :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|mfix| p))) mfix →
fix_context (map_fix rho Γ (rho_ctx_over Γ (fix_context mfix)) mfix) =
rho_ctx_over Γ (fix_context mfix).
Proof using wfΣ.
intros hm.
rewrite - (fix_context_fold p) //.
unfold map_fix. f_equal.
f_equal. f_equal. rewrite (fix_context_fold p) //.
Qed.
Lemma rho_cofix_subst p Γ mfix :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|mfix| p))) mfix →
cofix_subst (map_fix rho Γ (rho_ctx_over Γ (fix_context mfix)) mfix)
= (map (rho Γ) (cofix_subst mfix)).
Proof using wfΣ.
intros hm.
unfold cofix_subst. unfold map_fix at 2. rewrite !map_length.
induction #|mfix| at 1 2. reflexivity. simpl. simp rho. simpl.
simp rho. rewrite - (fold_fix_context_rho_ctx p) //. f_equal. apply IHn.
Qed.
Lemma rho_fix_subst p Γ mfix :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|mfix| p))) mfix →
fix_subst (map_fix rho Γ (rho_ctx_over Γ (fix_context mfix)) mfix)
= (map (rho Γ) (fix_subst mfix)).
Proof using wfΣ.
intros hm. unfold fix_subst. unfold map_fix at 2. rewrite !map_length.
induction #|mfix| at 1 2. reflexivity. simpl. simp rho; simpl; simp rho.
rewrite -(fold_fix_context_rho_ctx p) //. f_equal. apply IHn.
Qed.
Lemma nth_error_cofix_subst mfix n b :
nth_error (cofix_subst mfix) n = Some b →
b = tCoFix mfix (#|mfix| - S n).
Proof using Type.
unfold cofix_subst.
generalize #|mfix|. induction n0 in n, b |- ×. simpl.
destruct n; simpl; congruence.
destruct n; simpl. intros [= <-]. f_equal.
destruct n0; simpl; try reflexivity.
intros H. now specialize (IHn0 _ _ H).
Qed.
Lemma nth_error_fix_subst mfix n b :
nth_error (fix_subst mfix) n = Some b →
b = tFix mfix (#|mfix| - S n).
Proof using Type.
unfold fix_subst.
generalize #|mfix|. induction n0 in n, b |- ×. simpl.
destruct n; simpl; congruence.
destruct n; simpl. intros [= <-]. f_equal.
destruct n0; simpl; try reflexivity.
intros H. now specialize (IHn0 _ _ H).
Qed.
Lemma ctxmap_cofix_subst:
∀ (Γ' : context) (mfix1 : mfixpoint term),
ctxmap (Γ' ,,, fix_context mfix1) Γ' (cofix_subst mfix1 ⋅n ids).
Proof using Type.
intros Γ' mfix1.
intros x d' Hnth.
destruct (leb_spec_Set #|fix_context mfix1| x).
rewrite nth_error_app_ge // in Hnth.
rewrite fix_context_length in l Hnth.
destruct d' as [na [b'|] ty]; simpl; auto.
rewrite subst_consn_ge cofix_subst_length //.
unfold ids. eexists _, _; split; eauto.
rewrite Hnth. split; simpl; eauto.
apply inst_ext.
rewrite /subst_compose. simpl. intros v.
rewrite subst_consn_ge ?cofix_subst_length. lia.
unfold shiftk. f_equal. lia.
rewrite nth_error_app_lt in Hnth ⇒ //.
pose proof (fix_context_assumption_context mfix1).
destruct d' as [na [b'|] ty]; simpl; auto.
elimtype False. eapply nth_error_assumption_context in H; eauto.
simpl in H; discriminate.
Qed.
Lemma ctxmap_fix_subst:
∀ (Γ' : context) (mfix1 : mfixpoint term),
ctxmap (Γ' ,,, fix_context mfix1) Γ' (fix_subst mfix1 ⋅n ids).
Proof using Type.
intros Γ' mfix1.
intros x d' Hnth.
destruct (leb_spec_Set #|fix_context mfix1| x).
rewrite nth_error_app_ge // in Hnth.
rewrite fix_context_length in l Hnth.
destruct d' as [na [b'|] ty]; simpl; auto.
rewrite subst_consn_ge fix_subst_length //.
unfold ids. eexists _, _; split; eauto.
rewrite Hnth. split; simpl; eauto.
apply inst_ext.
rewrite /subst_compose. simpl. intros v.
rewrite subst_consn_ge ?fix_subst_length. lia.
unfold shiftk. f_equal. lia.
rewrite nth_error_app_lt in Hnth ⇒ //.
pose proof (fix_context_assumption_context mfix1).
destruct d' as [na [b'|] ty]; simpl; auto.
elimtype False. eapply nth_error_assumption_context in H; eauto.
simpl in H; discriminate.
Qed.
Lemma rho_triangle_All_All2_ind:
∀ (Γ : context) (brs : list (nat × term)),
pred1_ctx Σ Γ (rho_ctx Γ) →
All (fun x ⇒ pred1_ctx Σ Γ (rho_ctx Γ) → pred1 Σ Γ (rho_ctx Γ) (snd x) (rho (rho_ctx Γ) (snd x)))
brs →
All2 (on_Trel_eq (pred1 Σ Γ (rho_ctx Γ)) snd fst) brs
(map (fun x ⇒ (fst x, rho (rho_ctx Γ) (snd x))) brs).
Proof using Type.
intros. rewrite - {1}(map_id brs). eapply All2_map, All_All2; eauto.
Qed.
Lemma rho_triangle_All_All2_ind_terms:
∀ (Γ Γ' Γ'0 : context) (args0 args1 : list term),
pred1_ctx Σ Γ Γ' →
pred1_ctx Σ Γ' Γ'0 →
All2 (fun x y ⇒
(pred1 Σ Γ Γ' x y ×
((on_ctx_free_vars xpredT Γ →
on_free_vars xpredT x →
∀ Γ'0, pred1_ctx Σ Γ' Γ'0 →
pred1 Σ Γ' Γ'0 y (rho Γ'0 x))%type)))
args0 args1 →
on_ctx_free_vars xpredT Γ →
forallb (on_free_vars xpredT) args0 →
All2 (pred1 Σ Γ' Γ'0) args1 (map (rho Γ'0) args0).
Proof using Type.
intros. rewrite - {1}(map_id args1).
eapply All2_sym; solve_all.
Qed.
Lemma isConstruct_app_pred1 {Γ Δ a b} : pred1 Σ Γ Δ a b → isConstruct_app a → isConstruct_app b.
Proof using Type.
move⇒ pr; rewrite /isConstruct_app.
move e: (decompose_app a) ⇒ [hd args].
apply decompose_app_inv in e. subst a. simpl.
case: hd pr ⇒ // ind n ui.
move/pred1_mkApps_tConstruct ⇒ [args' [-> Hargs']] _.
rewrite decompose_app_mkApps //.
Qed.
Lemma is_constructor_pred1 Γ Γ' n l l' :
All2 (pred1 Σ Γ Γ') l l' →
is_constructor n l → is_constructor n l'.
Proof using Type.
induction 1 in n |- ×.
- now rewrite /is_constructor nth_error_nil.
- destruct n; rewrite /is_constructor /=.
now eapply isConstruct_app_pred1.
eapply IHX.
Qed.
Ltac inv_on_free_vars ::=
match goal with
| [ H : is_true (on_free_vars ?P ?t) |- _ ] ⇒
progress (cbn in H || rewrite → on_free_vars_mkApps in H);
(move/and5P: H ⇒ [] || move/and4P: H ⇒ [] || move/and3P: H ⇒ [] || move/andP: H ⇒ [] ||
eapply forallb_All in H); intros
| [ H : is_true (test_def (on_free_vars ?P) ?Q ?x) |- _ ] ⇒
let H0 := fresh in let H' := fresh in
move/andP: H ⇒ [H0 H'];
try rewrite → shiftnP_xpredT in H0;
try rewrite → shiftnP_xpredT in H'; intros
end.
Lemma pred1_on_free_vars_mfix_ind Γ Γ' P mfix0 mfix1 :
on_ctx_free_vars P Γ →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix0| P)) x) mfix0 →
All2_prop2_eq Γ Γ' (Γ,,, fix_context mfix0) (Γ',,, fix_context mfix1)
dtype dbody (fun x : def term ⇒ (dname x, rarg x))
(fun (Γ Γ' : context) (x y : term) ⇒
pred1 Σ Γ Γ' x y ×
(∀ P : nat → bool,
on_ctx_free_vars P Γ → on_free_vars P x → on_free_vars P y)) mfix0
mfix1 →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix1| P)) x) mfix1.
Proof using Type.
intros onΓ a a'; red in a'. rewrite -(All2_length a').
assert (on_ctx_free_vars (shiftnP #|mfix0| P) (Γ,,, fix_context mfix0)) by eauto with fvs.
solve_all.
inv_on_free_vars. destruct a0. apply/andP; split; eauto with fvs.
Qed.
Hint Resolve on_ctx_free_vars_snoc_ass on_ctx_free_vars_snoc_def : fvs.
Lemma pred1_on_free_vars_gen :
(∀ Γ Γ' t u,
pred1 Σ Γ Γ' t u →
∀ P,
on_ctx_free_vars P Γ →
on_free_vars P t → on_free_vars P u) ×
(∀ Γ Γ' Δ Δ',
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
∀ P,
on_ctx_free_vars P (Γ ,,, Δ) →
on_ctx_free_vars P (Γ' ,,, Δ')).
Proof using wfΣ.
set Pctx :=
fun (Γ Δ : context) ⇒
∀ P, on_ctx_free_vars P Γ → on_ctx_free_vars P Δ.
set Pctxover :=
fun (Γ Γ' Δ Δ' : context) ⇒
∀ P,
on_ctx_free_vars P (Γ ,,, Δ) →
on_ctx_free_vars P (Γ' ,,, Δ').
Ltac IHs :=
match goal with
[ H : ∀ P, is_true (on_ctx_free_vars P ?Γ) → is_true (on_free_vars P ?t) → _,
H' : is_true (on_ctx_free_vars _ ?Γ),
H'' : is_true (on_free_vars _ ?t) |- _ ] ⇒
specialize (H _ H' H'')
end.
Ltac t := repeat IHs; rtoProp; intuition eauto with fvs.
apply: (pred1_ind_all_ctx _ _ Pctx Pctxover); subst Pctx Pctxover; cbn -[on_ctx_free_vars]; intros; auto.
all:try solve [t].
- move: H; rewrite /on_ctx_free_vars.
generalize 0. clear X.
induction X0 in P |- *; simpl; auto.
intros n.
move/andP ⇒ [] Hd HΓ.
apply/andP; split.
destruct (P n) ⇒ //.
rewrite /= in Hd ×.
{ destruct p; cbn in Hd |- ×.
specialize (i (addnP (S n) P)).
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars in i.
setoid_rewrite addnP_add in i.
setoid_rewrite Nat.add_comm in i.
setoid_rewrite Nat.add_succ_r in i.
eauto.
specialize (i (addnP (S n) P)).
specialize (i0 (addnP (S n) P)).
move/andP: Hd ⇒ /= [onb ont].
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars in i i0.
setoid_rewrite addnP_add in i.
setoid_rewrite Nat.add_comm in i.
setoid_rewrite Nat.add_succ_r in i.
setoid_rewrite addnP_add in i0.
setoid_rewrite Nat.add_comm in i0.
setoid_rewrite Nat.add_succ_r in i0.
eauto with fvs. }
now specialize (IHX0 P (S n) HΓ).
- move: H0.
rewrite !on_ctx_free_vars_app.
move/andP⇒ [] onΔ onΓ. specialize (H _ onΓ).
rewrite -(All2_fold_length X2) H andb_true_r.
clear H. move: onΓ.
move: onΔ; rewrite /on_ctx_free_vars.
generalize 0. clear -X2.
induction X2 in P |- *; simpl; auto.
intros n.
move/andP ⇒ [] Hd HΓ' HΓ.
apply/andP; split.
destruct (P n) ⇒ //.
rewrite /= in Hd ×.
{ destruct p; cbn in Hd |- ×.
- specialize (i (addnP (S n) P)).
forward i.
rewrite on_ctx_free_vars_app.
rewrite alli_shift in HΓ'.
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars.
setoid_rewrite addnP_add.
setoid_rewrite Nat.add_comm.
setoid_rewrite Nat.add_succ_r.
rewrite HΓ' /=.
red. rewrite -HΓ. apply alli_ext ⇒ i' d.
rewrite addnP_add {1 4}/addnP !addnP_add. lia_f_equal.
eauto.
- specialize (i (addnP (S n) P)).
specialize (i0 (addnP (S n) P)).
assert (onext : on_ctx_free_vars (addnP (S n) P) (Γ ,,, Γ0)).
{ rewrite on_ctx_free_vars_app.
rewrite alli_shift in HΓ'.
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars.
setoid_rewrite addnP_add.
setoid_rewrite Nat.add_comm.
setoid_rewrite Nat.add_succ_r.
rewrite HΓ' /=.
red. rewrite -HΓ. apply alli_ext ⇒ i' d.
rewrite addnP_add {1 4}/addnP !addnP_add. lia_f_equal. }
move/andP: Hd ⇒ /= [onb ont].
specialize (i onext onb).
specialize (i0 onext ont).
eauto with fvs. }
apply (IHX2 P (S n) HΓ').
rewrite (alli_shiftn 1).
red; rewrite -HΓ.
apply alli_ext ⇒ i ?.
rewrite !addnP_add {1 3}/addnP. lia_f_equal.
- repeat t. eapply on_free_vars_subst; cbn; t.
- move/and3P: H3 ⇒ [] ond0 ont0 onb0; t.
eapply on_free_vars_subst; cbn; t.
- specialize (H _ H1).
rewrite on_free_vars_lift0 //.
change P with (addnP 0 P) in H.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_on_free_vars_ctx in H; tea.
destruct c as [na [decl|] ty] ⇒ //. noconf H0.
now move/andP: H.
- move/and4P: H3 ⇒ [] hpars hret hctx /andP[] hargs hbrs.
rewrite /iota_red.
eapply on_free_vars_subst.
{ rewrite forallb_rev forallb_skipn //.
inv_on_free_vars. solve_all; eauto with fvs. }
len.
eapply All2_nth_error_Some_right in X2 as [t' [hnth [? [[? ?] ?]]]]; tea.
eapply nth_error_forallb in hbrs; tea. cbn in hbrs.
move/andP: hbrs ⇒ [] hctx' hbody.
rewrite skipn_length; try lia. rewrite H1.
replace (ci_npar ci + context_assumptions (bcontext br) - ci_npar ci)
with (context_assumptions (bcontext br)) by lia.
eapply on_free_vars_expand_lets_k.
now len.
eapply on_free_vars_ctx_inst_case_context; trea; len; eauto with fvs.
solve_all.
rewrite -e.
now rewrite -(All2_length X1). len. eapply i0.
rewrite /inst_case_branch_context. rewrite -e; t.
now rewrite -e.
- inv_on_free_vars. t.
rewrite on_free_vars_mkApps.
specialize (H _ H3). t. inv_on_free_vars.
2:solve_all.
move: H1.
rewrite /unfold_fix. destruct nth_error eqn:hnth ⇒ //.
intros [= <- <-].
assert (on_ctx_free_vars (shiftnP #|mfix0| P) (Γ,,, fix_context mfix0)) by t.
assert (forallb (test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix1| P))) mfix1).
{ solve_all. eapply All2_All_mix_left in X1; tea.
rewrite -(All2_length X1).
unfold on_Trel in *; solve_all.
inv_on_free_vars. apply /andP; split; eauto with fvs. }
eapply on_free_vars_subst.
eapply (on_free_vars_fix_subst _ _ idx). cbn ⇒ //.
len. eapply nth_error_forallb in H4; tea.
now move/andP: H4 ⇒ [].
- move/and4P: H7 ⇒ [] ⇒ onpars onpret onctx /andP[] onargs onbrs.
inv_on_free_vars. cbn in a.
assert (on_ctx_free_vars (shiftnP #|p0.(pcontext)| P) (Γ,,, PCUICCases.inst_case_predicate_context p0)).
{ apply on_ctx_free_vars_inst_case_context; eauto. }
rewrite -H3 -(All2_length X3).
solve_all.
rewrite on_free_vars_mkApps. apply/andP; split; solve_all.
eapply pred1_on_free_vars_mfix_ind in X1; tea.
move: H1. rewrite /unfold_cofix.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_all in hnth; tea.
intros [= <- <-].
eapply on_free_vars_subst.
eapply (on_free_vars_cofix_subst _ _ idx); cbn; tea. solve_all.
cbn in hnth. now len; inv_on_free_vars.
rewrite -b //; eauto with fvs.
rewrite -b //; eauto with fvs. eapply b0; eauto with fvs.
eapply on_ctx_free_vars_inst_case_context; tea; solve_all.
- inv_on_free_vars. cbn in a.
rewrite on_free_vars_mkApps. apply/andP; split; solve_all.
eapply pred1_on_free_vars_mfix_ind in X1; tea.
move: H1. rewrite /unfold_cofix.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_all in hnth; tea.
intros [= <- <-].
eapply on_free_vars_subst.
eapply (on_free_vars_cofix_subst _ _ idx); cbn; tea. solve_all.
cbn in hnth. now len; inv_on_free_vars.
- eapply declared_constant_closed_body in H0; tea.
rewrite on_free_vars_subst_instance.
now eapply closed_on_free_vars.
- inv_on_free_vars.
eapply (All2_apply P) in X1.
eapply All2_apply_arrow in X1 ⇒ //. cbn in X1.
eapply All2_apply_dep_All in X1 ⇒ //. 2:solve_all.
now eapply nth_error_all in X1; tea.
- rewrite -H1 -(All2_length X0). t. solve_all.
solve_all. rewrite -b; t. eapply b0. rewrite -b /inst_case_branch_context; t.
eapply on_ctx_free_vars_inst_case_context; t. solve_all.
now rewrite -b.
- eapply pred1_on_free_vars_mfix_ind in X1; tea; solve_all.
- eapply pred1_on_free_vars_mfix_ind in X1; tea; solve_all.
- eapply All2_prod_inv in X0 as [? X0].
eapply (All2_apply P), (All2_apply_arrow H0) in X0.
solve_all.
Qed.
Lemma pred1_on_free_vars {P Γ Γ' t u} :
pred1 Σ Γ Γ' t u →
on_ctx_free_vars P Γ →
on_free_vars P t →
on_free_vars P u.
Proof using wfΣ.
intros p onΓ ont.
now move: (fst pred1_on_free_vars_gen _ _ _ _ p P onΓ ont).
Qed.
Lemma pred1_on_ctx_free_vars {P Γ Γ'} :
pred1_ctx Σ Γ Γ' →
on_ctx_free_vars P Γ →
on_ctx_free_vars P Γ'.
Proof using wfΣ.
intros p onΓ.
epose proof (snd pred1_on_free_vars_gen _ _ [] [] p).
forward H. constructor. now apply H.
Qed.
Lemma pred1_on_free_vars_ctx {P Γ Γ'} :
pred1_ctx Σ Γ Γ' →
on_free_vars_ctx P Γ →
on_free_vars_ctx P Γ'.
Proof using wfΣ.
intros p onΓ.
rewrite -on_free_vars_ctx_on_ctx_free_vars.
epose proof (snd pred1_on_free_vars_gen _ _ [] [] p).
forward H. constructor. apply H.
now rewrite /= -(All2_fold_length p) on_free_vars_ctx_on_ctx_free_vars.
Qed.
Lemma pred1_over_on_ctx_free_vars {P Γ Γ' Δ Δ'} :
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
on_ctx_free_vars P (Γ ,,, Δ) →
on_ctx_free_vars P (Γ' ,,, Δ').
Proof using wfΣ.
intros p p' onΓ.
now apply (snd pred1_on_free_vars_gen _ _ _ _ p p' P).
Qed.
Lemma on_free_vars_subst_consn P s x :
forallb (on_free_vars P) s →
on_free_vars xpredT ((s ⋅n ids) x).
Proof using Type.
rewrite /subst_consn ⇒ hs.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_forallb in hs; tea; cbn in ×.
eapply on_free_vars_impl; tea ⇒ //.
Qed.
Hint Resolve pred1_on_free_vars pred1_on_ctx_free_vars : fvs.
Lemma pred1_on_free_vars_mfix Γ Γ' P mfix0 mfix1 :
on_ctx_free_vars P Γ →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix0| P)) x) mfix0 →
All2_prop2_eq Γ Γ' (Γ,,, fix_context mfix0) (Γ',,, fix_context mfix1)
dtype dbody (fun x : def term ⇒ (dname x, rarg x))
(fun (Γ Γ' : context) (x y : term) ⇒
pred1 Σ Γ Γ' x y) mfix0 mfix1 →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix1| P)) x) mfix1.
Proof using wfΣ.
intros onΓ a a'.
pose proof (on_ctx_free_vars_fix_context _ _ _ a onΓ).
red in a'. rewrite -(All2_length a').
solve_all. inv_on_free_vars; unfold on_Trel in *; rewrite /test_def; rtoProp; intuition auto.
eauto with fvs. eapply pred1_on_free_vars; tea.
Qed.
Lemma lift0_inst_id k t s : #|s| < k → (lift0 k t).[s ⋅n ids] = lift0 (k - #|s|) t.
Proof using Type.
intros Hs. sigma.
apply inst_ext.
(rewrite shift_subst_consn_ge; try by lia); [].
now sigma.
Qed.
Lemma pred_subst_rho_cofix (Γ Γ' rΓ : context) (mfix0 mfix1 : mfixpoint term) idx :
on_free_vars xpredT (tCoFix mfix0 idx) →
on_ctx_free_vars xpredT Γ →
pred1_ctx Σ Γ Γ' → pred1_ctx Σ Γ' rΓ →
pred1_ctx_over Σ Γ' rΓ (fix_context mfix1)
(rho_ctx_over rΓ (fix_context mfix0)) →
All2 (on_Trel eq (fun x : def term ⇒ (dname x, rarg x)))
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ Γ Γ' x y
× pred1 Σ Γ' rΓ y
(rho rΓ x)) dtype)
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ
(Γ ,,, fix_context mfix0)
(Γ' ,,, fix_context mfix1) x
y
× pred1 Σ
(Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) y
(rho (rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) x))
dbody) mfix0 mfix1
→ pred1_subst (Σ := Σ) xpredT xpredT (Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) Γ' rΓ
(cofix_subst mfix1 ⋅n ids)
(cofix_subst (map_fix rho rΓ (rho_ctx_over rΓ (fix_context mfix0)) mfix0) ⋅n ids).
Proof using wfΣ.
intros hm onΓ predΓ predΓ' fctx eqf redr redl.
split ⇒ //. split ⇒ //. eauto with fvs.
intros x _.
split.
{ eapply on_free_vars_subst_consn.
eapply (on_free_vars_cofix_subst _ _ idx).
cbn. eapply All_forallb. eapply pred1_on_free_vars_mfix. tea.
cbn in hm. eapply forallb_All; tea. red. eapply All2_prod.
clear redl; solve_all.
unfold on_Trel in *; solve_all.
eapply All2_mix ⇒ //. clear redr. solve_all.
unfold on_Trel in *; solve_all. }
split.
destruct (leb_spec_Set (S x) #|cofix_subst mfix1|).
2:{ len in l; rewrite !subst_consn_ge //; len; try lia.
all:rewrite (All2_length redl) //. lia.
now eapply pred1_refl_gen.
}
destruct (subst_consn_lt_spec l) as [? [Hb Hb']].
rewrite Hb'.
eapply nth_error_cofix_subst in Hb. subst.
rewrite cofix_subst_length in l.
rewrite -(All2_length eqf) in l.
rewrite -(cofix_subst_length mfix0) in l.
destruct (subst_consn_lt_spec l) as [b' [Hb0 Hb0']].
rewrite (rho_cofix_subst xpredT) //.
pose proof (nth_error_map (rho rΓ) x (cofix_subst mfix0)).
rewrite Hb0 in H. simpl in H.
rewrite /subst_consn H.
eapply nth_error_cofix_subst in Hb0. subst b'.
cbn. rewrite (All2_length eqf).
simp rho; simpl; simp rho.
rewrite -(fold_fix_context_rho_ctx xpredT) //. constructor; auto.
+ rewrite (fix_context_map_fix xpredT) //.
+ red. clear -wfΣ hm eqf redr redl.
eapply All2_sym. apply All2_map_left.
pose proof (All2_mix eqf (All2_mix redr redl)) as X; clear eqf redr redl.
eapply All2_impl; eauto. clear X.
unfold on_Trel in ×. simpl. intros x y.
rewrite (fix_context_map_fix xpredT) //. intuition auto.
+ intros decl. pose proof (fix_context_assumption_context mfix1).
destruct (leb_spec_Set (S x) #|fix_context mfix1|).
rewrite nth_error_app_lt //.
destruct (nth_error (fix_context mfix1) x) eqn:Heq ⇒ // /=; auto.
destruct c as [na [?|] ty] ⇒ //.
move: (nth_error_assumption_context _ _ _ H Heq) ⇒ //.
intros [= <-] ⇒ //.
pose proof (All2_length redl). len in l.
rewrite nth_error_app_ge ?fix_context_length //; try lia.
destruct nth_error eqn:hnth ⇒ //.
intros [= ->]. destruct decl as [na [b|] ty] ⇒ /= //.
eapply nth_error_pred1_ctx in predΓ.
2:erewrite hnth⇒ /= //.
destruct predΓ as [body' [eq pr]].
epose proof (nth_error_pred1_ctx_l _ _ predΓ').
erewrite hnth in X. specialize (X eq_refl) as [body'' [eq' pr']].
∃ body''.
rewrite nth_error_app_ge //; len; try lia. rewrite H0.
split ⇒ //.
rewrite subst_consn_ge. len; lia. len.
rewrite -H0 {1}/ids.
rewrite -inst_assoc.
rewrite -lift0_inst lift0_inst_id. len.
len. replace (S x - #|mfix0|) with (S (x - #|mfix0|)) by lia.
econstructor; tea. now rewrite H0.
Qed.
Lemma pred_subst_rho_fix (Γ Γ' rΓ : context) (mfix0 mfix1 : mfixpoint term) idx :
on_free_vars xpredT (tCoFix mfix0 idx) →
on_ctx_free_vars xpredT Γ →
pred1_ctx Σ Γ Γ' → pred1_ctx Σ Γ' rΓ →
pred1_ctx_over Σ Γ' rΓ (fix_context mfix1)
(rho_ctx_over rΓ (fix_context mfix0)) →
All2 (on_Trel eq (fun x : def term ⇒ (dname x, rarg x)))
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ Γ Γ' x y
× pred1 Σ Γ' rΓ y
(rho rΓ x)) dtype)
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ
(Γ ,,, fix_context mfix0)
(Γ' ,,, fix_context mfix1) x
y
× pred1 Σ
(Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) y
(rho (rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) x))
dbody) mfix0 mfix1
→ pred1_subst (Σ := Σ) xpredT xpredT (Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) Γ' rΓ
(fix_subst mfix1 ⋅n ids)
(fix_subst (map_fix rho rΓ (rho_ctx_over rΓ (fix_context mfix0)) mfix0) ⋅n ids).
Proof using wfΣ.
intros hm onΓ predΓ predΓ' fctx eqf redr redl.
split ⇒ //. split ⇒ //. eauto with fvs.
intros x _.
split.
{ eapply on_free_vars_subst_consn.
eapply (on_free_vars_fix_subst _ _ idx).
cbn. eapply All_forallb. eapply pred1_on_free_vars_mfix. tea.
cbn in hm. eapply forallb_All; tea. red. eapply All2_prod.
clear redl; solve_all.
unfold on_Trel in *; solve_all.
eapply All2_mix ⇒ //. clear redr. solve_all.
unfold on_Trel in *; solve_all. }
split.
destruct (leb_spec_Set (S x) #|fix_subst mfix1|).
2:{ len in l; rewrite !subst_consn_ge //; len; try lia.
all:rewrite (All2_length redl) //. lia.
now eapply pred1_refl_gen.
}
destruct (subst_consn_lt_spec l) as [? [Hb Hb']].
rewrite Hb'.
eapply nth_error_fix_subst in Hb. subst.
rewrite fix_subst_length in l.
rewrite -(All2_length eqf) in l.
rewrite -(fix_subst_length mfix0) in l.
destruct (subst_consn_lt_spec l) as [b' [Hb0 Hb0']].
rewrite (rho_fix_subst xpredT) //.
pose proof (nth_error_map (rho rΓ) x (fix_subst mfix0)).
rewrite Hb0 in H. simpl in H.
rewrite /subst_consn H.
eapply nth_error_fix_subst in Hb0. subst b'.
cbn. rewrite (All2_length eqf).
simp rho; simpl; simp rho.
rewrite -(fold_fix_context_rho_ctx xpredT) //. constructor; auto.
+ rewrite (fix_context_map_fix xpredT) //.
+ red. clear -wfΣ hm eqf redr redl.
eapply All2_sym. apply All2_map_left.
pose proof (All2_mix eqf (All2_mix redr redl)) as X; clear eqf redr redl.
eapply All2_impl; eauto. clear X.
unfold on_Trel in ×. simpl. intros x y.
rewrite (fix_context_map_fix xpredT) //. intuition auto.
+ intros decl. pose proof (fix_context_assumption_context mfix1).
destruct (leb_spec_Set (S x) #|fix_context mfix1|).
rewrite nth_error_app_lt //.
destruct (nth_error (fix_context mfix1) x) eqn:Heq ⇒ // /=; auto.
destruct c as [na [?|] ty] ⇒ //.
move: (nth_error_assumption_context _ _ _ H Heq) ⇒ //.
intros [= <-] ⇒ //.
pose proof (All2_length redl). len in l.
rewrite nth_error_app_ge ?fix_context_length //; try lia.
destruct nth_error eqn:hnth ⇒ //.
intros [= ->]. destruct decl as [na [b|] ty] ⇒ /= //.
eapply nth_error_pred1_ctx in predΓ.
2:erewrite hnth⇒ /= //.
destruct predΓ as [body' [eq pr]].
epose proof (nth_error_pred1_ctx_l _ _ predΓ').
erewrite hnth in X. specialize (X eq_refl) as [body'' [eq' pr']].
∃ body''.
rewrite nth_error_app_ge //; len; try lia. rewrite H0.
split ⇒ //.
rewrite subst_consn_ge. len; lia. len.
rewrite -H0 {1}/ids.
rewrite -inst_assoc.
rewrite -lift0_inst lift0_inst_id. len.
len. replace (S x - #|mfix0|) with (S (x - #|mfix0|)) by lia.
econstructor; tea. now rewrite H0.
Qed.
Section All2_telescope.
Context (P : ∀ (Γ Γ' : context), context_decl → context_decl → Type).
Definition telescope := context.
Inductive All2_telescope (Γ Γ' : context) : telescope → telescope → Type :=
| telescope2_nil : All2_telescope Γ Γ' [] []
| telescope2_cons_abs na t t' Δ Δ' :
P Γ Γ' (vass na t) (vass na t') →
All2_telescope (Γ ,, vass na t) (Γ' ,, vass na t') Δ Δ' →
All2_telescope Γ Γ' (vass na t :: Δ) (vass na t' :: Δ')
| telescope2_cons_def na b b' t t' Δ Δ' :
P Γ Γ' (vdef na b t) (vdef na b' t') →
All2_telescope (Γ ,, vdef na b t) (Γ' ,, vdef na b' t') Δ Δ' →
All2_telescope Γ Γ' (vdef na b t :: Δ) (vdef na b' t' :: Δ').
End All2_telescope.
Section All2_telescope_n.
Context (P : ∀ (Γ Γ' : context), context_decl → context_decl → Type).
Context (f : nat → term → term).
Inductive All2_telescope_n (Γ Γ' : context) (n : nat) : telescope → telescope → Type :=
| telescope_n_nil : All2_telescope_n Γ Γ' n [] []
| telescope_n_cons_abs na t t' Δ Δ' :
P Γ Γ' (vass na (f n t)) (vass na (f n t')) →
All2_telescope_n (Γ ,, vass na (f n t)) (Γ' ,, vass na (f n t')) (S n) Δ Δ' →
All2_telescope_n Γ Γ' n (vass na t :: Δ) (vass na t' :: Δ')
| telescope_n_cons_def na b b' t t' Δ Δ' :
P Γ Γ' (vdef na (f n b) (f n t)) (vdef na (f n b') (f n t')) →
All2_telescope_n (Γ ,, vdef na (f n b) (f n t)) (Γ' ,, vdef na (f n b') (f n t'))
(S n) Δ Δ' →
All2_telescope_n Γ Γ' n (vdef na b t :: Δ) (vdef na b' t' :: Δ').
End All2_telescope_n.
Lemma All2_telescope_mapi {P} Γ Γ' Δ Δ' (f : nat → term → term) k :
All2_telescope_n P f Γ Γ' k Δ Δ' →
All2_telescope P Γ Γ' (mapi_rec (fun n ⇒ map_decl (f n)) Δ k)
(mapi_rec (fun n ⇒ map_decl (f n)) Δ' k).
Proof using Type.
induction 1; simpl; constructor; auto.
Qed.
Lemma local_env_telescope P Γ Γ' Δ Δ' :
All2_telescope (on_decls P) Γ Γ' Δ Δ' →
on_contexts_over P Γ Γ' (List.rev Δ) (List.rev Δ').
Proof using Type.
induction 1. simpl. constructor.
- simpl. depelim p. eapply on_contexts_over_app.
repeat constructor ⇒ //.
revert IHX.
generalize (List.rev Δ) (List.rev Δ'). induction 1. constructor.
constructor; auto. depelim p0; constructor;
now rewrite !app_context_assoc.
- simpl. eapply on_contexts_over_app. repeat constructor ⇒ //.
revert IHX.
generalize (List.rev Δ) (List.rev Δ'). induction 1. constructor.
constructor; auto. depelim p0; constructor;
now rewrite !app_context_assoc.
Qed.
Lemma All_All2_telescopei_gen p (Γ Γ' Δ Δ' : context) (m m' : mfixpoint term) :
#|Δ| = #|Δ'| →
on_ctx_free_vars p Γ →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2 (fun (x y : def term) ⇒ (pred1 Σ Γ Γ' (dtype x) (dtype y)) × (dname x = dname y))%type m m' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n)
(Γ ,,, Δ) (Γ' ,,, Δ')
#|Δ|
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m').
Proof using wfΣ.
generalize #|m|. intros n Δlen onΓ' onm.
induction 1 in Δ, Δ', Δlen, onm |- *; cbn. constructor.
intros. destruct r. rewrite e.
move: onm ⇒ /= /andP[] /andP [] onty onbody onl.
repeat constructor.
rewrite {2}Δlen.
eapply weakening_pred1_pred1; eauto.
specialize (IHX (vass (dname y) (lift0 #|Δ| (dtype x)) :: Δ)
(vass (dname y) (lift0 #|Δ'| (dtype y)) :: Δ')).
rewrite {2}Δlen.
unfold snoc. forward IHX. simpl. lia.
forward IHX by auto. cbn.
forward IHX. constructor. apply X0. constructor. simpl.
eapply weakening_pred1_pred1; eauto.
simpl in IHX.
apply IHX.
Qed.
Lemma All_All2_telescopei_gen_rho p (Γ Γ' Δ Δ' : context) (m m' : mfixpoint term) :
#|Δ| = #|Δ'| →
on_ctx_free_vars p Γ' →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2
(fun (x y : def term) ⇒ (pred1 Σ Γ' Γ (dtype x) (rho Γ (dtype y))) × (dname x = dname y))%type m m' →
on_contexts_over (pred1 Σ) Γ' Γ Δ (rho_ctx_over Γ Δ') →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n)
(Γ' ,,, Δ) (Γ ,,, rho_ctx_over Γ Δ')
#|Δ|
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (rho Γ (dtype def))) m').
Proof using wfΣ.
intros.
rewrite -(map_map_compose _ _ _ (fun def ⇒ map_def (rho Γ) (rho Γ) def) (fun def ⇒ vass (dname def) (dtype def))).
eapply All_All2_telescopei_gen; tea. now len.
eapply All2_map_right; solve_all.
Qed.
Lemma All_All2_telescopei p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2 (fun (x y : def term) ⇒ (pred1 Σ Γ Γ' (dtype x) (dtype y)) ×
(dname x = dname y))%type m m' →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n) Γ Γ' 0
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m').
Proof using wfΣ.
specialize (All_All2_telescopei_gen p Γ Γ' [] [] m m'). simpl.
intros. specialize (X eq_refl H H0 X0). forward X. constructor.
apply X.
Qed.
Lemma All_All2_telescopei_rho p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ' →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2 (fun (x y : def term) ⇒ (pred1 Σ Γ' Γ (dtype x) (rho Γ (dtype y))) ×
(dname x = dname y))%type m m' →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n) Γ' Γ 0
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (rho Γ (dtype def))) m').
Proof using wfΣ.
intros onΓ' H0 X.
specialize (All_All2_telescopei_gen_rho p Γ Γ' [] [] m m').
intros. specialize (X0 eq_refl onΓ' H0 X).
forward X0. constructor.
apply X0.
Qed.
Lemma rho_All_All2_fold_inv :
∀ Γ Γ' : context, pred1_ctx Σ Γ' Γ → ∀ Δ Δ' : context,
All2_fold (on_decls (on_decls_over (pred1 Σ) Γ' Γ)) Δ
(rho_ctx_over Γ Δ') →
All2_fold
(on_decls
(fun (Δ Δ' : context) (t t' : term) ⇒ pred1 Σ (Γ' ,,, Δ)
(Γ ,,, rho_ctx_over Γ Δ') t
(rho (Γ ,,, rho_ctx_over Γ Δ') t'))) Δ Δ'.
Proof using Type.
intros. induction Δ in Δ', X0 |- *; depelim X0; destruct Δ'; noconf H.
- constructor.
- destruct c as [? [?|] ?]; simpl in *; depelim a0; simpl in *; constructor;
rewrite ?rho_ctx_app.
2:constructor; auto. eapply IHΔ; auto; rewrite !rho_ctx_app; eauto.
apply IHΔ; auto. constructor; auto.
Qed.
Lemma pred1_fix_context p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
pred1_ctx Σ Γ Γ' →
All2 (on_Trel_eq (pred1 Σ Γ Γ') dtype dname) m m' →
pred1_ctx_over Σ Γ Γ' (fix_context m) (fix_context m').
Proof using wfΣ.
intros onΓ' hm HΓ a.
unfold fix_context. unfold map_fix.
eapply local_env_telescope.
rewrite -(mapi_map (fun n decl ⇒ lift_decl n 0 decl) m
(fun def ⇒ vass (dname def) (dtype def))).
rewrite -(mapi_map (fun n decl ⇒ lift_decl n 0 decl) m'
(fun def ⇒ vass (dname def) (dtype def))).
eapply All2_telescope_mapi.
eapply All_All2_telescopei; eauto.
Qed.
Lemma pred1_rho_fix_context_2 p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ' →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
pred1_ctx Σ Γ' Γ →
All2 (on_Trel_eq (pred1 Σ Γ' Γ) dtype dname) m
(map_fix rho Γ (fold_fix_context rho Γ [] m') m') →
All2_fold
(on_decls (on_decls_over (pred1 Σ) Γ' Γ))
(fix_context m)
(fix_context (map_fix rho Γ (fold_fix_context rho Γ [] m') m')).
Proof using wfΣ.
intros onΓ' hm HΓ a.
eapply pred1_fix_context; tea.
Qed.
Lemma decompose_app_rec_inst s t l :
let (f, a) := decompose_app_rec t l in
inst s f = f →
decompose_app_rec (inst s t) (map (inst s) l) = (f, map (inst s) a).
Proof using Type.
induction t in s, l |- *; simpl; auto; try congruence.
intros →. simpl. reflexivity.
specialize (IHt1 s (t2 :: l)).
destruct decompose_app_rec. intros H. rewrite IHt1; auto.
Qed.
Lemma decompose_app_inst s t f a :
decompose_app t = (f, a) → inst s f = f →
decompose_app (inst s t) = (inst s f, map (inst s) a).
Proof using Type.
generalize (decompose_app_rec_inst s t []).
unfold decompose_app. destruct decompose_app_rec.
move⇒ Heq [= <- <-] Heq'. now rewrite Heq' (Heq Heq').
Qed.
Hint Rewrite decompose_app_inst using auto : lift.
Lemma All2_fold_context_assumptions {P} {Γ Δ} :
All2_fold (on_decls P) Γ Δ →
context_assumptions Γ = context_assumptions Δ.
Proof using Type.
induction 1; simpl; auto. depelim p ⇒ /=; now auto using f_equal.
Qed.
Lemma pred1_subst_consn {Δ Δ' Γ Γ' args0 args1} :
pred1_ctx Σ Γ' Γ →
on_ctx_free_vars xpredT Γ' →
forallb (on_free_vars xpredT) args1 →
#|args1| = #|args0| →
context_assumptions Δ' = #|args0| →
context_assumptions Δ = context_assumptions Δ' →
All2 (pred1 Σ Γ' Γ) args1 args0 →
pred1_subst (Σ := Σ) xpredT xpredT (Γ',,, smash_context [] Δ)
(Γ ,,, smash_context [] Δ') Γ' Γ (args1 ⋅n ids) (args0 ⋅n ids).
Proof using Type.
intros Hpred hlen onΓ' onargs Hctx hΔ Ha.
split ⇒ //. split ⇒ //.
intros i _.
destruct (leb_spec_Set (S i) #|args1|).
pose proof (subst_consn_lt_spec l) as [arg [hnth heq]].
rewrite heq.
split; [|split].
- eapply nth_error_forallb in hnth; tea.
- eapply All2_nth_error_Some in Ha as [t' [hnth' pred]]; tea.
pose proof (subst_consn_lt_spec (nth_error_Some_length hnth')) as [arg' [hnth'' ->]].
rewrite hnth' in hnth''. now noconf hnth''.
- intros decl. case: nth_error_appP ⇒ /= //.
× intros x hnth'. len ⇒ hleni. intros [= <-].
eapply nth_error_smash_context in hnth'.
now rewrite hnth'.
intros ? ?; now rewrite nth_error_nil.
× len.
- rewrite subst_consn_ge //. lia.
pose proof (All2_length Ha). len in H. rewrite H.
rewrite subst_consn_ge //. 1: by len. split ⇒ //.
split ⇒ //.
× eapply pred1_refl_gen ⇒ //.
× intros decl. rewrite nth_error_app_ge. 1: by len. len.
destruct nth_error eqn:hnth' ⇒ /= //.
destruct decl_body eqn:db ⇒ /= //. intros [= <-].
rewrite nth_error_app_ge; len; try lia.
pose proof Hpred as predΓ'.
eapply nth_error_pred1_ctx_l in Hpred; tea.
2:erewrite hnth'; rewrite /= db //.
destruct Hpred as [body' [eq' pr]]. ∃ body'; split ⇒ //.
now rewrite -hΔ. rewrite {1}/ids.
rewrite -inst_assoc -lift0_inst lift0_inst_id. lia.
replace (S i - #|args0|) with (S (i - #|args0|)) by lia.
econstructor; tea. congruence.
Qed.
Lemma context_assumptions_smash_context' acc Γ :
context_assumptions (smash_context acc Γ) = #|smash_context [] Γ| +
context_assumptions acc.
Proof using Type.
induction Γ as [|[na [b|] ty] Γ]; simpl; len; auto;
rewrite context_assumptions_smash_context; now len.
Qed.
Lemma context_assumptions_smash_context'' Γ :
context_assumptions (smash_context [] Γ) = #|smash_context [] Γ|.
Proof using Type.
rewrite context_assumptions_smash_context' /=; lia.
Qed.
Lemma context_assumptions_smash Γ :
context_assumptions Γ = #|smash_context [] Γ|.
Proof using Type.
rewrite -context_assumptions_smash_context''.
now rewrite context_assumptions_smash_context.
Qed.
Lemma pred1_ext Γ Γ' t t' u u' :
t = t' → u = u' → pred1 Σ Γ Γ' t u → pred1 Σ Γ Γ' t' u'.
Proof using Type.
now intros → →.
Qed.
Lemma pred1_expand_lets (Γ Γ' Δ Δ' : context) b b' :
on_ctx_free_vars xpredT Γ →
on_ctx_free_vars xpredT Δ →
on_free_vars xpredT b →
pred1 Σ (Γ ,,, Δ) (Γ' ,,, Δ') b b' →
#|Γ| = #|Γ'| →
pred1 Σ (Γ ,,, smash_context [] Δ) (Γ' ,,, smash_context [] Δ')
(expand_lets Δ b) (expand_lets Δ' b').
Proof using wfΣ.
intros onΓ onΔ onb pred hlen.
induction Δ in onΔ, Γ, onΓ, Γ', hlen, Δ', b, onb, b', pred |- × using ctx_length_rev_ind.
- destruct Δ'. simpl. now rewrite !expand_lets_nil.
eapply pred1_pred1_ctx in pred.
move: (length_of pred). len.
- destruct Δ' using rev_case.
{ eapply pred1_pred1_ctx in pred.
move: (length_of pred). len. }
pose proof (pred1_pred1_ctx _ pred).
apply on_contexts_app_inv in X0 as [].
apply on_contexts_app_inv in a0 as [].
depelim a0. clear a0.
all:simpl; auto.
depelim a1.
× rewrite !(smash_context_app) /=.
rewrite !app_context_assoc in pred.
rewrite on_ctx_free_vars_app in onΔ.
move/andP: onΔ ⇒ [] /= onΔ onass. cbn in onass.
rewrite → !addnP_xpredT, andb_true_r in onass.
assert (on_ctx_free_vars xpredT (Γ ,, vass na t)).
{ pose proof (on_ctx_free_vars_snoc_ass xpredT _ na _ onΓ onass).
now rewrite → shiftnP_xpredT in H. }
specialize (X Γ0 ltac:(reflexivity) _ _ _ _ _ H onΔ onb pred ltac:(len; lia)).
now rewrite !expand_lets_vass !app_context_assoc.
× rewrite !(smash_context_app) /=.
rewrite !app_context_assoc in pred.
rewrite on_ctx_free_vars_app in onΔ.
move/andP: onΔ ⇒ [] /= onΔ onass. cbn in onass.
rewrite → !addnP_xpredT, andb_true_r in onass.
assert (on_ctx_free_vars xpredT (Γ ,, vdef na b0 t)).
{ move/andP: onass ⇒ [] /= onty onb'.
pose proof (on_ctx_free_vars_snoc_def xpredT _ na _ _ onΓ onb' onty).
now rewrite → shiftnP_xpredT in H. }
specialize (X Γ0 ltac:(reflexivity) _ _ _ _ _ H onΔ onb pred ltac:(len; lia)).
rewrite !expand_lets_vdef.
rewrite (expand_lets_subst_comm Γ0 [b0] b).
rewrite (expand_lets_subst_comm l [b'0] b').
change (Γ ,, vdef na b0 t) with (Γ ,,, [vdef na b0 t]) in X.
move/andP: onass ⇒ /= [] onb0 ont.
eapply substitution_let_pred1 in X; tas. len in X. now exact X.
+ rewrite -{1}(subst_empty 0 b0) -{1}(subst_empty 0 b'0); repeat constructor; pcuic.
now rewrite !subst_empty.
+ len. now eapply All2_fold_context_assumptions in a2.
+ constructor; pcuic. repeat constructor ⇒ //.
+ constructor; auto.
+ eapply on_free_vars_ctx_smash ⇒ //.
now rewrite -on_ctx_free_vars_xpredT.
+ len. eapply on_free_vars_expand_lets_k ⇒ //.
{ now eapply All2_fold_context_assumptions in a2. }
{ rewrite -on_ctx_free_vars_xpredT //. }
{ rewrite shiftnP_xpredT //. }
Qed.
Lemma fold_context_cst (ctx : context) : ctx = fold_context (fun _ d ⇒ map_decl id d) ctx.
Proof using Type.
induction ctx; simpl; auto.
now rewrite -IHctx map_decl_id.
Qed.
Lemma All_decls_on_free_vars_map_impl_inv P Q R f d d' :
All_decls P d d' →
on_free_vars_decl R d →
(∀ t t', on_free_vars R t → P t t' → Q t' (f t)) →
All_decls Q d' (map_decl f d).
Proof using Type.
move⇒ [] /=; constructor; auto.
eapply X; eauto with pcuic.
now move/andP: H ⇒ /= [].
now move/andP: H ⇒ /= [].
Qed.
Lemma on_ctx_free_vars_xpredT_snoc d Γ :
on_ctx_free_vars xpredT (d :: Γ) =
on_ctx_free_vars xpredT Γ && on_free_vars_decl xpredT d.
Proof using Type.
rewrite -{1}(shiftnP_xpredT (S #|Γ|)).
now rewrite on_ctx_free_vars_snocS shiftnP_xpredT; bool_congr.
Qed.
Hint Extern 3 (is_true (on_ctx_free_vars xpredT _)) ⇒
rewrite on_ctx_free_vars_xpredT_snoc : fvs.
Hint Extern 3 (is_true (_ && _)) ⇒ apply/andP; idtac : fvs.
Lemma on_ctx_free_vars_xpredT_skipn Γ n :
on_ctx_free_vars xpredT Γ →
on_ctx_free_vars xpredT (skipn n Γ).
Proof using Type.
rewrite -{1}(firstn_skipn n Γ).
now rewrite on_ctx_free_vars_app addnP_xpredT ⇒ /andP[].
Qed.
Lemma pred1_ctx_over_refl_gen Γ Γ' Δ :
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ.
Proof using Type.
intros H.
induction Δ as [|[na [b|] ty] Δ]; constructor; auto.
all:constructor; apply pred1_refl_gen, All2_fold_app ⇒ //.
Qed.
Definition fake_params n : context :=
unfold n (fun x ⇒ {| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};
decl_body := None;
decl_type := tSort Universe.type0 |}).
Lemma context_assumptions_fake_params n :
context_assumptions (fake_params n) = n.
Proof using Type.
induction n; simpl; auto. cbn.
len. now rewrite IHn.
Qed.
Hint Rewrite context_assumptions_fake_params : len.
Lemma pred1_ctx_over_inst_case_context Γ Γ' pars pars' puinst pctx :
pred1_ctx Σ Γ Γ' →
on_ctx_free_vars xpredT Γ →
forallb (on_free_vars xpredT) pars →
on_free_vars_ctx (shiftnP #|pars| xpredT) pctx →
All2 (pred1 Σ Γ Γ') pars pars' →
pred1_ctx_over Σ Γ Γ'
(inst_case_context pars puinst pctx)
(inst_case_context pars' puinst pctx).
Proof using wfΣ.
intros pr onctx onpars onpctx a.
assert (clpars' : forallb (on_free_vars xpredT) (List.rev pars)).
{ rewrite forallb_rev //. }
rewrite /inst_case_context.
rewrite !subst_context0_inst_context.
eapply strong_substitutivity with (P := xpredT) (Q := xpredT).
instantiate (1 := Γ' ,,, smash_context [] (fake_params #|pars|)).
instantiate (1 := Γ ,,, smash_context [] (fake_params #|pars|)).
eapply All2_fold_app ⇒ //.
now eapply pred1_ctx_over_refl_gen.
eapply pred1_ctx_over_refl_gen.
eapply All2_fold_app ⇒ //.
now eapply pred1_ctx_over_refl_gen.
rewrite on_free_vars_ctx_subst_instance; tea.
now rewrite → shiftnP_xpredT in onpctx.
erewrite <- on_free_vars_ctx_on_ctx_free_vars.
erewrite shiftnP_xpredT ⇒ //.
rewrite -subst_context0_inst_context.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_subst_context_xpredT ⇒ //.
rewrite on_free_vars_ctx_subst_instance //.
now rewrite → shiftnP_xpredT in onpctx.
eapply pred1_subst_consn; tea; eauto with fvs.
- len. now rewrite (All2_length a).
- len. rewrite context_assumptions_fake_params. now rewrite (All2_length a).
- now eapply All2_rev.
Qed.
Lemma rho_inst_case_context Γ Γ' rΓ pars pars' puinst pctx :
pred1_ctx Σ Γ Γ' →
pred1_ctx Σ Γ' rΓ →
on_ctx_free_vars xpredT Γ →
forallb (on_free_vars xpredT) pars →
on_free_vars_ctx (shiftnP #|pars| xpredT) pctx →
All2 (fun x y : term ⇒
pred1 Σ Γ Γ' x y ×
(on_ctx_free_vars xpredT Γ →
on_free_vars xpredT x →
∀ rΓ, pred1_ctx Σ Γ' rΓ →
pred1 Σ Γ' rΓ y (rho rΓ x))) pars pars' →
pred1_ctx_over Σ Γ' rΓ
(inst_case_context pars' puinst pctx)
(inst_case_context (map (rho rΓ) pars) puinst pctx).
Proof using wfΣ.
intros pr pr' onctx onpars onpctx a.
eapply pred1_ctx_over_inst_case_context ⇒ //; eauto with fvs.
{ solve_all; eauto with fvs. }
now rewrite -(All2_length a).
eapply All2_map_right, All2_sym; solve_all.
Qed.
Ltac my_rename_hyp h th :=
match th with
| pred1 _ _ _ ?b _ ⇒ fresh "pred" b
| is_true (on_ctx_free_vars _ _) → _ ⇒ fresh "pred" th
| _ ⇒ PCUICParallelReduction.my_rename_hyp h th
end.
Ltac rename_hyp h ht ::= my_rename_hyp h ht.
Lemma All2_fold_fold_context_right P f (ctx ctx' : context) :
All2_fold (fun Γ Γ' d d' ⇒ P Γ (fold_context_term f Γ') d (map_decl (f (fold_context_term f Γ')) d')) ctx ctx' →
All2_fold P ctx (fold_context_term f ctx').
Proof using Type.
induction 1; cbn; constructor; auto.
Qed.
Lemma All_decls_map_right P d f d' :
All_decls (fun t t' ⇒ P t (f t')) d d' →
All_decls P d (map_decl f d').
Proof using Type.
case; constructor ⇒ //.
Qed.
Theorem triangle_gen :
(∀ Γ Δ t u, pred1 Σ Γ Δ t u →
on_ctx_free_vars xpredT Γ →
on_free_vars xpredT t →
∀ Γ', pred1_ctx Σ Δ Γ' →
pred1 Σ Δ Γ' u (rho Γ' t)) ×
(∀ Γ Γ' Δ Δ',
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
on_ctx_free_vars xpredT (Γ ,,, Δ) →
∀ Γ'0, pred1_ctx Σ Γ' Γ'0 →
pred1_ctx_over Σ Γ' Γ'0 Δ' (rho_ctx_over Γ'0 Δ)).
Proof using wfΣ with solve_discr.
set Pctx := fun (Γ Δ : context) ⇒
on_ctx_free_vars xpredT Γ →
pred1_ctx Σ Δ (rho_ctx Γ).
refine (pred1_ind_all_ctx Σ _ Pctx _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);
subst Pctx; intros ×.
all:try intros **; rename_all_hyps;
try solve [specialize (forall_Γ _ X3); eauto]; eauto;
try solve [simpl; econstructor; simpl; eauto]; repeat inv_on_free_vars;
try rewrite → shiftnP_xpredT in *; eauto.
- cbn in ×. simpl.
induction X0; simpl; depelim predΓ'; [constructor|]; rewrite ?app_context_nil_l; simpl; eauto.
rewrite on_ctx_free_vars_xpredT_snoc ⇒ /= /andP[] ond onΓ.
constructor; auto.
eapply All_decls_on_free_vars_map_impl_inv; tea.
cbn. intros t t' ont IH. eauto.
-
simpl.
induction X3; simpl; depelim X2; constructor; simpl; intuition auto.
move: H. rewrite /= on_ctx_free_vars_xpredT_snoc ⇒ /andP[] ond onΓ; eauto.
move: H. rewrite /= on_ctx_free_vars_xpredT_snoc ⇒ /andP[] ond onΓ; eauto.
eapply All_decls_on_free_vars_map_impl_inv; tea; cbn; eauto.
intros t t' ont IH.
specialize (IH ond ont). eapply IH.
eapply on_contexts_app ⇒ //. eapply X ⇒ //.
- simpl. rename_all_hyps.
rewrite (rho_app_lambda _ _ _ _ _ []).
pose proof (pred1_pred1_ctx _ predt0).
eapply (substitution0_pred1); simpl in *; eauto; rtoProp; eauto with fvs.
eapply impl_impl_forall_Γ'; eauto with fvs.
constructor; eauto. constructor. eauto with fvs.
- simp rho.
pose proof (pred1_pred1_ctx _ predt0).
eapply (substitution0_let_pred1); simpl in *; eauto with fvs.
eapply pred1_on_free_vars; tea. eauto with fvs.
eapply impl_impl_forall_Γ'1; eauto with fvs.
constructor; eauto. constructor; eauto with fvs.
- simp rho.
destruct nth_error eqn:Heq. simpl in X0.
pose proof Heq. apply nth_error_Some_length in Heq.
destruct c as [na [?|] ?]; noconf heq_option_map.
simpl in X0.
assert (on_free_vars xpredT body).
eapply pred1_on_ctx_free_vars in H0; tea.
change xpredT with (addnP 0 xpredT) in H0.
eapply nth_error_on_free_vars_ctx in H0; tea.
now move/andP: H0.
eapply (f_equal (option_map decl_body)) in H.
eapply nth_error_pred1_ctx_l in H; eauto.
destruct H. intuition. rewrite a. simp rho.
rewrite -{1}(firstn_skipn (S i) Γ').
rewrite -{1}(firstn_skipn (S i) Γ'0).
pose proof (All2_fold_length predΓ'0).
assert (S i = #|firstn (S i) Γ'|).
rewrite !firstn_length_le; try lia.
assert (S i = #|firstn (S i) Γ'0|).
rewrite !firstn_length_le; try lia.
rewrite {5}H3 {6}H4.
eapply pred1_on_ctx_free_vars in predΓ'; tea.
eapply weakening_pred1_pred1; eauto with fvs.
eapply on_contexts_over_firstn_skipn. auto.
erewrite on_ctx_free_vars_xpredT_skipn ⇒ //.
noconf heq_option_map.
- simp rho. simpl in ×.
destruct option_map eqn:Heq.
destruct o. constructor; auto.
constructor. auto.
constructor. auto.
-
simpl in X0. cbn.
rewrite rho_app_case.
rewrite decompose_app_mkApps; auto.
change eq_inductive with (@eqb inductive _).
destruct (eqb_specT ci.(ci_ind) ci.(ci_ind)); try discriminate.
2:{ congruence. }
unfold iota_red. eapply forallb_All in p4. eapply All2_All_mix_left in X3; tea.
eapply All2_nth_error_Some_right in X3 as [br0 [hnth [hcl [IHbr [[predbod IHbod] breq]]]]]; tea.
move/andP: hcl ⇒ [] clbctx clbod.
rewrite hnth.
have fvbrctx : on_ctx_free_vars xpredT (Γ,,, inst_case_branch_context p0 br0).
{rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r /inst_case_branch_context.
rewrite on_ctx_free_vars_xpredT. eapply on_free_vars_ctx_inst_case_context; trea. }
intuition.
forward X3. now rewrite → shiftnP_xpredT in clbod.
pose proof (All2_length X1).
rewrite H. rewrite heq_length.
replace (ci_npar ci + context_assumptions (bcontext br) - ci_npar ci)
with (context_assumptions (bcontext br)) by lia.
rewrite breq eqb_refl.
rewrite !subst_inst.
assert (forallb (on_free_vars xpredT) args1).
{ solve_all; eauto with fvs. }
eapply rho_triangle_All_All2_ind_terms in X1. 3:exact predΓ'0. all:tea.
rewrite /rho_iota_red subst_inst.
eapply strong_substitutivity.
+ instantiate (2 := (Γ' ,,, smash_context [] (inst_case_branch_context (set_pparams p0 pparams1) br))).
instantiate (1 := (Γ'0 ,,, smash_context [] (inst_case_branch_context (rho_predicate Γ'0 p0) br0))).
eapply pred1_expand_lets; eauto with fvs.
rewrite /inst_case_branch_context in X3 *; cbn; eauto with fvs.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea.
solve_all. eauto with fvs. rewrite -(All2_length X2) -breq //.
eapply pred1_on_free_vars; tea.
eapply nth_error_all in hnth; tea. move/andP: hnth ⇒ [].
now rewrite shiftnP_xpredT.
eapply X3. eapply on_contexts_app ⇒ //.
assert (bredctx :
pred1_ctx_over Σ Γ' Γ'0 (inst_case_branch_context (set_pparams p0 pparams1) br)
(inst_case_branch_context (rho_predicate Γ'0 p0) br0)).
{ rewrite /inst_case_branch_context /=.
rewrite -breq.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in clbctx.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
exact bredctx.
now rewrite (All2_fold_length predΓ'0).
+ eapply on_free_vars_expand_lets_k. reflexivity.
eapply on_free_vars_ctx_inst_case_context; trea; cbn; solve_all; eauto with fvs.
rewrite -(All2_length X2) // -breq //. len.
rewrite -breq.
eapply pred1_on_free_vars; tea.
rewrite on_ctx_free_vars_app. len. rewrite addnP_shiftnP H1 andb_true_r.
relativize #|bcontext br0|; [erewrite on_free_vars_ctx_on_ctx_free_vars|].
eapply on_free_vars_ctx_inst_case_context; trea; cbn; solve_all; eauto with fvs.
now len.
+ rewrite -subst_inst.
eapply on_free_vars_subst. rewrite forallb_rev forallb_skipn //; tea.
eapply on_free_vars_expand_lets_k ⇒ //. len.
rewrite skipn_length; lia.
rewrite /inst_case_branch_context.
eapply on_free_vars_ctx_inst_case_context; trea; len; solve_all. eauto with fvs.
rewrite -breq -(All2_length X2) //.
eapply pred1_on_free_vars; tea. 2:len; rewrite -breq //.
len. rewrite shiftnP_xpredT //.
+ eapply pred1_subst_ext.
rewrite shiftnP_xpredT. intros i; reflexivity. intros i; reflexivity.
1-2:sigma; reflexivity.
eapply All2_skipn in X1.
eapply All2_rev in X1.
eapply pred1_subst_consn; tea. eauto with fvs.
rewrite forallb_rev forallb_skipn //. len. rewrite !List.skipn_length; lia.
len. rewrite breq List.skipn_length H heq_length. lia.
len. congruence.
-
unfold unfold_fix in heq_unfold_fix |- ×.
rewrite rho_app_fix.
destruct nth_error eqn:Heq; noconf heq_unfold_fix.
assert (on_free_vars xpredT (tFix mfix1 idx)).
{ eapply All2_All_mix_left in X3; tea.
cbn. eapply All_forallb. eapply All2_All_right; tea. cbn.
intuition auto. destruct a1.
move/andP: a0 ⇒ [] onty onb.
rewrite → shiftnP_xpredT in onb.
apply/andP; split; eauto with fvs.
rewrite shiftnP_xpredT.
eapply pred1_on_free_vars; tea.
rewrite on_ctx_free_vars_app H1 andb_true_r.
rewrite -(shiftnP_xpredT #|fix_context mfix0|).
rewrite on_free_vars_ctx_on_ctx_free_vars.
eapply on_free_vars_fix_context. solve_all. }
eapply All2_nth_error_Some_right in Heq; eauto.
destruct Heq as [t' [Hnth Hrel]].
destruct Hrel as [[Hty Hrhoty] [[Hreleq0 Hreleq1] Heq]].
rewrite Hnth. simpl.
destruct args0. depelim X4. unfold is_constructor in heq_is_constructor.
rewrite nth_error_nil in heq_is_constructor ⇒ //.
pose proof Hnth as hnth'.
eapply All2_nth_error_Some in hnth'; eauto.
destruct hnth' as [fn' [Hnth' [? ?]]].
destruct t', d.
noconf Heq. destruct o, p as [[ol ol'] or].
noconf or. cbn -[map].
move: heq_is_constructor. cbn -[map].
revert X4 b. cbn in × |-. generalize (t :: args0). simpl.
clear t args0. intros args0 Hargs onfvs isc.
simpl. rewrite isc.
eapply pred_mkApps.
rewrite !subst0_inst. eapply PCUICParallelReduction.simpl_pred; [sigma; trea|sigma; trea|].
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //; solve_all.
move/andP: (nth_error_all Hnth a) ⇒ /= [] ondtype ondbody.
specialize (X0 ondtype); specialize (X2 ondtype).
assert (onfvfix : on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_fix_context; solve_all. }
specialize (Hreleq1 onfvfix).
rewrite → shiftnP_xpredT in ondbody. specialize (Hreleq1 ondbody).
eapply strong_substitutivity; eauto with fvs.
× eapply Hreleq1. eapply on_contexts_app ⇒ //.
eapply impl_forall_Γ'0; eauto with fvs.
× rewrite -subst0_inst. eapply on_free_vars_subst.
eapply (on_free_vars_fix_subst _ _ idx). cbn. solve_all.
eapply pred1_on_free_vars; tea; now rewrite shiftnP_xpredT.
× rewrite -(rho_fix_subst xpredT). solve_all.
eapply All2_prop2_eq_split in X3.
eapply (pred_subst_rho_fix Γ _ _ _ _ idx); intuition auto. cbn. solve_all.
clear b0. solve_all. unfold on_Trel in ×. intuition auto.
clear b0; solve_all. eapply X4; eauto.
now move/andP: a0 ⇒ []. solve_all. unfold on_Trel in ×.
intuition eauto with fvs. apply X4.
move/andP: a0 ⇒ []. now rewrite shiftnP_xpredT.
eapply on_contexts_app ⇒ //. eapply X3; eauto.
× eapply forallb_All in onfvs. eapply All2_All_mix_left in Hargs; tea.
eapply All2_sym, All2_map_left, All2_impl; eauto. simpl.
intuition eauto.
-
rewrite rho_app_case.
rewrite decompose_app_mkApps; auto.
unfold unfold_cofix in heq_unfold_cofix |- ×.
destruct nth_error eqn:Heq; noconf heq_unfold_cofix. simpl.
eapply All2_prop2_eq_split in X3. intuition.
eapply All2_nth_error_Some_right in Heq; eauto.
destruct Heq as [t' [Ht' Hrel]]. rewrite Ht'. simpl.
unfold on_Trel in ×. destruct Hrel.
assert (oninst : on_ctx_free_vars xpredT (Γ,,, PCUICCases.inst_case_predicate_context p0)).
{ rewrite on_ctx_free_vars_app H2 andb_true_r.
rewrite on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea. }
forward impl_forall_Γ'1 by tas.
intuition auto.
assert (predctx :
pred1_ctx_over Σ Γ' Γ'0 (PCUICCases.inst_case_predicate_context p1)
(PCUICCases.inst_case_predicate_context (rho_predicate Γ'0 p0))).
{ rewrite /PCUICCases.inst_case_predicate_context /=.
rewrite -heq_puinst -heq_pcontext.
eapply rho_inst_case_context; tea.
rewrite test_context_k_closed_on_free_vars_ctx in p3.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
eapply pred_case; simpl; eauto.
× eapply All2_sym, All2_map_left. solve_all.
× apply X2, All2_fold_app ⇒ //.
× eapply All2_sym, All2_map_left.
eapply forallb_All in p5.
eapply All2_All_mix_left in X9; tea.
eapply (All2_impl X9). cbn; move⇒ x y [] /andP[] clbctx clbbody [].
assert (on_ctx_free_vars xpredT (Γ,,, inst_case_branch_context p0 x)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H2 andb_true_r.
rewrite /inst_case_branch_context.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea; solve_all. }
rewrite → shiftnP_xpredT in clbbody.
move/(_ H) ⇒ IHctx [] [] pbody /(_ H clbbody) IHbbody eqctx.
assert (bredctx :
pred1_ctx_over Σ Γ' Γ'0 (inst_case_branch_context p1 y)
(inst_case_branch_context (rho_predicate Γ'0 p0) x)).
{ rewrite /inst_case_branch_context /=.
rewrite -heq_puinst -eqctx.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in clbctx.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
repeat split ⇒ //.
eapply IHbbody.
eapply on_contexts_app ⇒ //.
× eapply pred_mkApps.
rewrite -(fold_fix_context_rho_ctx xpredT).
set (rhoΓ := rho_ctx Γ ,,, rho_ctx_over (rho_ctx Γ) (fix_context mfix0)) in × ⇒ //.
solve_all.
rewrite !subst_inst. eapply PCUICParallelReduction.simpl_pred; try now sigma.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H2 andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
now eapply on_free_vars_fix_context. }
assert (on_free_vars xpredT (dbody t')).
{eapply nth_error_all in a; tea.
move/andP: a ⇒ []. now rewrite shiftnP_xpredT. }
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix1| xpredT))) mfix1).
{ eapply All2_prod in a1; tea. solve_all; eauto with fvs. inv_on_free_vars.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
eapply strong_substitutivity; eauto; tea.
+ eapply p6; tea; eauto with fvs.
eapply on_contexts_app ⇒ //. eapply impl_forall_Γ'0; eauto with fvs.
+ eauto with fvs.
+ rewrite -subst0_inst. eapply on_free_vars_subst.
eapply (on_free_vars_cofix_subst _ _ idx); cbn; tea. len.
eapply pred1_on_free_vars; tea; rewrite shiftnP_xpredT //.
+ rewrite -(rho_cofix_subst xpredT) //. solve_all.
eapply (pred_subst_rho_cofix Γ _ _ _ _ idx); tea; auto. cbn; solve_all.
eapply All2_All_mix_left in a1; tea.
eapply (All2_impl a1); solve_all. inv_on_free_vars.
solve_all. unfold on_Trel in *; solve_all.
solve_all. unfold on_Trel in *; solve_all. inv_on_free_vars.
eapply X3; eauto with fvs.
eapply on_contexts_app ⇒ //.
eapply X0 ⇒ //.
+ eapply forallb_All in b. eapply All2_All_mix_left in X4; tea.
eapply All2_sym, All2_map_left, All2_impl; eauto. simpl. intuition eauto.
-
simpl. cbn in H1; inv_on_free_vars. cbn in a.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H0 andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
eapply on_free_vars_fix_context; solve_all. }
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix1| xpredT))) mfix1).
{ red in X3. solve_all; eauto with fvs. inv_on_free_vars. unfold on_Trel in ×. solve_all.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
destruct p as [[ind pars] arg].
rewrite rho_app_proj.
rewrite decompose_app_mkApps. auto.
unfold unfold_cofix in heq_unfold_cofix |- ×.
destruct nth_error eqn:Heq; noconf heq_unfold_cofix.
eapply All2_nth_error_Some_right in Heq; eauto.
destruct Heq as [t' [Hnth Hrel]]. destruct Hrel as [[Hty Hrhoty] [[Hreleq0 Hreleq1] Heq]].
assert (on_free_vars xpredT (dbody t')).
{ solve_all. eapply nth_error_all in a; tea.
move/andP: a ⇒ []. now rewrite shiftnP_xpredT. }
assert (on_free_vars xpredT (dtype t')).
{ solve_all. eapply nth_error_all in a; tea.
now move/andP: a ⇒ []. }
assert (on_free_vars xpredT (dbody d)).
{ eauto with fvs. }
unfold map_fix. rewrite Hnth /=.
econstructor. eapply pred_mkApps; eauto.
rewrite - (fold_fix_context_rho_ctx xpredT) //.
rewrite !subst0_inst. eapply strong_substitutivity; tea.
+ eapply Hreleq1; eauto with fvs.
eapply on_contexts_app ⇒ //.
eapply impl_forall_Γ'0; eauto with fvs.
+ rewrite -subst0_inst.
eapply on_free_vars_subst; eauto with fvs.
eapply (on_free_vars_cofix_subst _ _ idx); eauto with fvs.
rewrite shiftnP_xpredT //.
+ rewrite -(rho_cofix_subst xpredT) //.
red in X3. eapply (pred_subst_rho_cofix Γ _ _ _ _ idx) ⇒ //; solve_all; unfold on_Trel in *; eauto with fvs.
inv_on_free_vars. solve_all. inv_on_free_vars. solve_all.
eapply X6; eauto with fvs.
eapply on_contexts_app ⇒ //. solve_all.
+ eapply forallb_All in b;eapply All2_All_mix_left in X4; tea.
eapply All2_sym, All2_map_left; solve_all.
- simpl; simp rho; simpl.
simpl in X0. red in H. rewrite H /= heq_cst_body /=.
now eapply pred1_refl_gen.
- simpl in ×. simp rho; simpl.
destruct (lookup_env Σ c) eqn:Heq. 2:{ constructor; auto. }
destruct g. 2:{ constructor; auto. }
destruct c0. destruct cst_body0 eqn:Heq'. pcuic.
constructor; auto.
- simpl in ×. inv_on_free_vars. rewrite rho_app_proj.
rewrite decompose_app_mkApps; auto.
change eq_inductive with (@eqb inductive _).
case: eqb_specT ⇒ // ⇒ _.
eapply All2_nth_error_Some_right in heq_nth_error as [t' [? ?]]; eauto.
simpl in y. rewrite e. simpl.
auto. eapply y ⇒ //.
eapply nth_error_forallb in b; tea.
- simpl; simp rho. eapply pred_abs; auto.
eapply impl_impl_forall_Γ'0; eauto with fvs.
constructor; eauto with fvs. constructor; eauto with fvs.
-
∀ x, match nth_error Γ x with
| Some d ⇒
match decl_body d return Prop with
| Some b ⇒
∃ b', option_map decl_body (nth_error Δ (r x)) = Some (Some b') ∧
b'.[↑^(S (r x))] = b.[↑^(S x) ∘s ren r]
| None ⇒ option_map decl_body (nth_error Δ (r x)) = Some None
end
| None ⇒ nth_error Δ (r x) = None
end.
Instance renaming_ext Γ Δ : Morphisms.Proper (`=1` ==> iff)%signature (renaming Γ Δ).
Proof using Type.
red. red. intros.
split; intros.
- intros n. specialize (H0 n).
destruct nth_error; auto.
destruct c as [na [b|] ty]; simpl in *; auto.
destruct H0 as [b' [Heq Heq']]; auto. ∃ b'. rewrite -(H n).
intuition auto. now rewrite Heq' H. now rewrite -H.
now rewrite -H.
- intros n. specialize (H0 n).
destruct nth_error; auto.
destruct c as [na [b|] ty]; simpl in *; auto.
destruct H0 as [b' [Heq Heq']]; auto. ∃ b'. rewrite (H n).
intuition auto. now rewrite Heq' H. now rewrite H.
now rewrite H.
Qed.
Lemma shiftn1_renaming Γ Δ c c' r :
renaming Γ Δ r →
(decl_body c' = option_map (fun x ⇒ x.[ren r]) (decl_body c)) →
renaming (c :: Γ) (c' :: Δ) (shiftn 1 r).
Proof using Type.
intros.
red.
destruct x. simpl.
destruct (decl_body c) eqn:Heq; rewrite H0; auto. eexists. simpl. split; eauto.
sigma. rewrite -ren_shiftn. now sigma.
simpl.
rewrite Nat.sub_0_r. specialize (H x).
destruct nth_error eqn:Heq.
destruct c0 as [na [b|] ty]; cbn in ×.
destruct H as [b' [Hb Heq']].
∃ b'; intuition auto.
rewrite -ren_shiftn. autorewrite with sigma in Heq' |- ×.
rewrite Nat.sub_0_r.
rewrite -?subst_compose_assoc -inst_assoc.
rewrite -[b.[_]]inst_assoc. rewrite Heq'.
now sigma.
auto. auto.
Qed.
Lemma shift_renaming Γ Δ ctx ctx' r :
All2i_len (fun n decl decl' ⇒ (decl_body decl' = option_map (fun x ⇒ x.[ren (shiftn n r)]) (decl_body decl)))
ctx ctx' →
renaming Γ Δ r →
renaming (Γ ,,, ctx) (Δ ,,, ctx') (shiftn #|ctx| r).
Proof using Type.
induction 1.
intros. rewrite shiftn0. apply H.
intros. simpl.
rewrite shiftnS. apply shiftn1_renaming. apply IHX; try lia. auto.
apply r0.
Qed.
Lemma shiftn_renaming Γ Δ ctx r :
renaming Γ Δ r →
renaming (Γ ,,, ctx) (Δ ,,, rename_context r ctx) (shiftn #|ctx| r).
Proof using Type.
induction ctx; simpl; auto.
× intros. rewrite shiftn0. apply H.
× intros. simpl.
rewrite shiftnS rename_context_snoc /=.
apply shiftn1_renaming. now apply IHctx.
simpl. destruct (decl_body a) ⇒ /= //.
now sigma.
Qed.
Lemma shiftn_renaming_eq Γ Δ ctx r k :
renaming Γ Δ r →
k = #|ctx| →
renaming (Γ ,,, ctx) (Δ ,,, rename_context r ctx) (shiftn k r).
Proof using Type.
now intros hr ->; apply shiftn_renaming.
Qed.
Lemma renaming_shift_rho_fix_context:
∀ (mfix : mfixpoint term) (Γ Δ : list context_decl) (r : nat → nat),
renaming Γ Δ r →
renaming (Γ ,,, rho_fix_context Γ mfix)
(Δ ,,, rho_fix_context Δ (map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix))
(shiftn #|mfix| r).
Proof using Type.
intros mfix Γ Δ r Hr.
rewrite -{2}(rho_fix_context_length Γ mfix).
eapply shift_renaming; auto.
rewrite /rho_fix_context !fold_fix_context_rev.
apply All2i_rev_ctx_inv, All2i_mapi.
simpl. apply All2i_trivial; auto. now rewrite map_length.
Qed.
Lemma map_fix_rho_rename:
∀ (mfix : mfixpoint term) (i : nat) (l : list term),
(∀ t' : term, depth t' < depth (mkApps (tFix mfix i) l)
→ ∀ (Γ Δ : list context_decl) (r : nat → nat) (P : nat → bool),
renaming Γ Δ r →
on_free_vars P t' →
rename r (rho Γ t') = rho Δ (rename r t'))
→ ∀ (Γ Δ : list context_decl) (r : nat → nat) P n,
renaming Γ Δ r →
on_free_vars P (tFix mfix n) →
map (map_def (rename r) (rename (shiftn #|mfix| r)))
(map_fix rho Γ (fold_fix_context rho Γ [] mfix) mfix) =
map_fix rho Δ (fold_fix_context rho Δ [] (map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix))
(map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix).
Proof using Type.
intros mfix i l H Γ Δ r P H2 Hr onfix. inv_on_free_vars.
rewrite /map_fix !map_map_compose !compose_map_def.
apply map_ext_in ⇒ d hin.
have hdepth := mfixpoint_depth_In hin.
eapply All_In in onfix as []; tea.
move/andP: H0 ⇒ [onty onbod].
apply map_def_eq_spec.
- specialize (H (dtype d)).
forward H. move: (depth_mkApps (tFix mfix i) l). simpl. lia.
now eapply H; tea.
- specialize (H (dbody d)).
forward H. move: (depth_mkApps (tFix mfix i) l). simpl. lia.
eapply H. eapply renaming_shift_rho_fix_context; tea. tea.
Qed.
Lemma All_IH {A depth} (l : list A) k (P : A → Type) :
list_depth_gen depth l < k →
(∀ x, depth x < k → P x) →
All P l.
Proof using Type.
induction l in k |- ×. constructor.
simpl. intros Hk IH.
constructor. apply IH. lia.
eapply (IHl k). lia. intros x sx.
apply IH. lia.
Qed.
Lemma All_IH' {A depth B depth'} (f : A → B) (l : list A) k (P : B → Type) :
list_depth_gen depth l < k →
(∀ x, depth' (f x) ≤ depth x) →
(∀ x, depth' x < k → P x) →
All (fun x ⇒ P (f x)) l.
Proof using Type.
induction l in k |- ×. constructor.
simpl. intros Hk Hs IH.
constructor. apply IH. specialize (Hs a). lia.
eapply (IHl k). lia. apply Hs.
apply IH.
Qed.
Transparent fold_context.
Lemma fold_context_mapi_context f g (Γ : context) :
fold_context f (mapi_context g Γ) =
fold_context (fun Γ ⇒ f Γ ∘ map_decl (g #|Γ|)) Γ.
Proof using Type.
induction Γ. simpl. auto.
simpl. f_equal; auto.
now rewrite -IHΓ; len.
Qed.
Lemma mapi_context_fold_context f g (Γ : context) :
mapi_context f (fold_context (fun Γ ⇒ g (mapi_context f Γ)) Γ) =
fold_context (fun Γ ⇒ map_decl (f #|Γ|) ∘ g Γ) Γ.
Proof using Type.
induction Γ. simpl. auto.
simpl. f_equal; auto. len.
now rewrite -IHΓ.
Qed.
Lemma onctx_fold_context_term P Γ (f g : context → term → term) :
onctx P Γ →
(∀ Γ x,
onctx P Γ →
fold_context_term f Γ = fold_context_term g Γ →
P x → f (fold_context_term f Γ) x = g (fold_context_term g Γ) x) →
fold_context_term f Γ = fold_context_term g Γ.
Proof using Type.
intros onc Hp. induction onc; simpl; auto.
f_equal; auto.
eapply map_decl_eq_spec; tea.
intros. now apply Hp.
Qed.
Lemma rho_ctx_rename Γ r :
fold_context_term (fun Γ' x ⇒ rho Γ' (rename (shiftn #|Γ'| r) x)) Γ =
rho_ctx (rename_context r Γ).
Proof using Type.
rewrite /rename_context.
rewrite -mapi_context_fold.
rewrite fold_context_mapi_context.
now setoid_rewrite compose_map_decl.
Qed.
Lemma rename_rho_ctx {r ctx} :
onctx
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat),
renaming Γ Δ r → rename r (rho Γ t) = rho Δ (rename r t))
ctx →
rename_context r (rho_ctx ctx) =
rho_ctx (rename_context r ctx).
Proof using Type.
intros onc.
rewrite /rename_context - !mapi_context_fold.
induction onc; simpl; eauto.
f_equal; eauto.
rewrite !compose_map_decl.
eapply map_decl_eq_spec; tea ⇒ /= t.
intros IH.
erewrite IH.
1: now rewrite -IHonc; len.
rewrite mapi_context_fold.
rewrite -/(rename_context r (rho_ctx l)).
epose proof (shiftn_renaming [] [] (rho_ctx l) r).
rewrite !app_context_nil_l in H. eapply H.
now intros i; rewrite !nth_error_nil.
Qed.
Lemma ondecl_map (P : term → Type) f (d : context_decl) :
ondecl P (map_decl f d) →
ondecl (fun x ⇒ P (f x)) d.
Proof using Type.
destruct d ⇒ /=; rewrite /ondecl /=.
destruct decl_body ⇒ /= //.
Qed.
Lemma rename_rho_ctx_over {ctx} {Γ Δ r P p} :
renaming Γ Δ r →
forallb (on_free_vars P) (pparams p) →
test_context_k (fun k : nat ⇒ on_free_vars (closedP k xpredT)) #|p.(pparams)| ctx →
onctx
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t))
(inst_case_context p.(pparams) p.(puinst) ctx) →
rename_context r (rho_ctx_over Γ (inst_case_context p.(pparams) p.(puinst) ctx)) =
rho_ctx_over Δ (rename_context r (inst_case_context p.(pparams) p.(puinst) ctx)).
Proof using Type.
rewrite /inst_case_context.
intros Hr onpars clc onc.
rewrite /rename_context - !mapi_context_fold.
induction ctx; simpl; eauto.
move: clc ⇒ /= /andP [] clc clx.
specialize (IHctx clc).
move: onc. rewrite /inst_case_context subst_instance_cons subst_context_snoc /= ⇒ onc.
depelim onc.
f_equal; eauto.
rewrite !compose_map_decl.
eapply ondecl_map in o.
eapply ondecl_map in o.
eapply map_decl_eqP_spec; tea ⇒ t.
cbn; intros IH onfv.
rewrite Nat.add_0_r; len. len in IH.
erewrite <-IH ⇒ //. specialize (IHctx onc).
rewrite -IHctx.
rewrite mapi_context_fold.
rewrite -/(rename_context _ _).
relativize #|ctx|.
apply (shiftn_renaming _ _ (rho_ctx_over Γ _) r Hr). now len.
eapply on_free_vars_subst_gen.
2:erewrite on_free_vars_subst_instance; tea.
rewrite /on_free_vars_terms.
solve_all.
Qed.
Lemma context_assumptions_fold_context_term f Γ :
context_assumptions (fold_context_term f Γ) = context_assumptions Γ.
Proof using Type.
induction Γ ⇒ /= //.
destruct (decl_body a) ⇒ /= //; f_equal ⇒ //.
Qed.
Hint Rewrite context_assumptions_fold_context_term : len.
Lemma mapi_context_rename r Γ :
mapi_context (fun k : nat ⇒ rename (shiftn k r)) Γ =
rename_context r Γ.
Proof using Type. rewrite mapi_context_fold //. Qed.
Lemma inspect_nth_error_rename {r brs u res} (eq : nth_error brs u = res) :
∑ prf,
inspect (nth_error (rename_branches r brs) u) =
exist (option_map (rename_branch r) res) prf.
Proof using Type. simpl.
rewrite nth_error_map eq. now ∃ eq_refl.
Qed.
Lemma pres_bodies_rename Γ Δ r ctx :
renaming Γ Δ r →
All2i_len
(fun (n : nat) (decl decl' : context_decl) ⇒
decl_body decl' =
option_map (fun x : term ⇒ x.[ren (shiftn n r)]) (decl_body decl))
(rho_ctx_over Γ ctx)
(rename_context r (rho_ctx_over Γ ctx)).
Proof using Type.
intros Hr.
induction ctx; simpl; auto.
- constructor.
- rewrite rename_context_snoc. constructor; auto.
destruct a as [na [b|] ty] ⇒ /= //.
f_equal. now sigma.
Qed.
Lemma pres_bodies_rename' Γ Δ r ctx :
renaming Γ Δ r →
All2i_len
(fun (n : nat) (decl decl' : context_decl) ⇒
decl_body decl' =
option_map (fun x : term ⇒ x.[ren (shiftn n r)]) (decl_body decl))
ctx
(rename_context r ctx).
Proof using Type.
intros Hr.
induction ctx; simpl; auto.
- constructor.
- rewrite rename_context_snoc. constructor; auto.
destruct a as [na [b|] ty] ⇒ /= //.
f_equal. now sigma.
Qed.
Lemma rho_rename_pred Γ Δ p r P :
renaming Γ Δ r →
forallb (on_free_vars P) (pparams p) →
on_free_vars (shiftnP #|pcontext p| P) (preturn p) →
test_context_k (fun k : nat ⇒ PCUICOnFreeVars.on_free_vars (PCUICOnFreeVars.closedP k xpredT))
#|pparams p| (pcontext p) →
CasePredProp_depth
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t)) p →
rename_predicate r (rho_predicate Γ p) = rho_predicate Δ (rename_predicate r p).
Proof using Type.
intros Hr onpars onret onp [? [? ?]].
rewrite /rename_predicate /rho_predicate; cbn. f_equal. solve_all.
eapply e. relativize #|pcontext p|; [eapply shift_renaming|]; tea; len ⇒ //.
assert ((map (rho Δ) (map (rename r) (pparams p)) = map (rename r) (map (rho Γ) (pparams p)))).
solve_all. erewrite b; trea.
rewrite H.
rewrite -rename_inst_case_context_wf //. len ⇒ //.
rewrite /id. eapply pres_bodies_rename' ⇒ //; tea. tea.
Qed.
Lemma rename_rho_iota_red Γ Δ r p P pars args brs br c :
renaming Γ Δ r →
#|args| = pars + context_assumptions br.(bcontext) →
forallb (on_free_vars P) (pparams p) →
closedn_ctx #|pparams p| br.(bcontext) →
on_free_vars (shiftnP #|bcontext br| P) (bbody br) →
test_context_k (fun k : nat ⇒ on_free_vars (closedP k xpredT)) #|pparams p| (bcontext br) →
CasePredProp_depth
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t)) p →
CaseBrsProp_depth p
(fun t : term ⇒
∀ (Γ Δ : list context_decl) (r : nat → nat) P,
renaming Γ Δ r → on_free_vars P t → rename r (rho Γ t) = rho Δ (rename r t)) brs →
nth_error brs c = Some br →
rename r (rho_iota_red Γ (rho_predicate Γ p) pars args br) =
rho_iota_red Δ (rho_predicate Δ (rename_predicate r p)) pars (map (rename r) args) (rename_branch r br).
Proof using Type.
intros Hr hlen hpars hlen' hbod hbr hpred hbrs hnth.
unfold rho_iota_red.
rewrite rename_subst0 map_rev map_skipn. f_equal.
rewrite List.rev_length /expand_lets /expand_lets_k.
rewrite rename_subst0. len.
rewrite skipn_length; try lia.
rewrite hlen.
replace (pars + context_assumptions (bcontext br) - pars)
with (context_assumptions (bcontext br)) by lia.
rewrite shiftn_add Nat.add_comm rename_shiftnk.
relativize (context_assumptions _); [erewrite rename_extended_subst|now len].
assert ((map (rho Δ) (map (rename r) (pparams p)) = map (rename r) (map (rho Γ) (pparams p)))).
destruct hpred as [? _].
solve_all. erewrite b; trea.
f_equal. f_equal. rewrite /inst_case_branch_context /= /id.
rewrite H.
rewrite -rename_inst_case_context_wf // /id. len ⇒ //.
eapply All_nth_error in hbrs as []; tea.
f_equal.
rewrite /inst_case_branch_context. cbn.
erewrite e; trea.
relativize #|bcontext br|; [eapply shift_renaming|]; tea; len ⇒ //.
rewrite H -rename_inst_case_context_wf //. now len.
rewrite /id. now eapply pres_bodies_rename'.
Qed.
Lemma rho_rename P Γ Δ r t :
renaming Γ Δ r →
on_free_vars P t →
rename r (rho Γ t) = rho Δ (rename r t).
Proof using cf Σ wfΣ.
revert t Γ Δ r P.
refine (PCUICDepth.term_ind_depth_app _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);
intros until Γ; intros Δ r P Hr ont; try subst Γ; try rename Γ0 into Γ; repeat inv_on_free_vars.
all:auto 2.
- red in Hr. simpl.
specialize (Hr n).
destruct (nth_error Γ n) as [c|] eqn:Heq.
-- simp rho. rewrite Heq /=.
destruct decl_body eqn:Heq''.
simp rho. rewrite lift0_inst.
destruct Hr as [b' [-> Hb']] ⇒ /=.
rewrite lift0_inst.
sigma. autorewrite with sigma in ×. now rewrite <- Hb'.
simpl.
rewrite Hr. simpl. reflexivity.
-- simp rho. rewrite Heq Hr //.
- simpl; simp rho. simpl. f_equal; rewrite !map_map_compose. solve_all.
- simpl; simp rho; simpl. erewrite H; eauto. f_equal.
erewrite H0; eauto.
simpl. eapply (shift_renaming _ _ [_] [_]). repeat constructor. auto.
- simpl; simp rho; simpl. erewrite H; eauto.
erewrite H0; eauto.
simpl. eapply (shift_renaming _ _ [_] [_]). repeat constructor. auto.
- simpl; simp rho; simpl. rewrite /subst1 subst_inst.
specialize (H _ _ _ _ Hr p). specialize (H0 _ _ _ _ Hr p0).
autorewrite with sigma in H, H0, H1.
erewrite <- (H1 ((vdef n (rho Γ t) (rho Γ t0) :: Γ))).
2:{ eapply (shift_renaming _ _ [_] [_]). repeat constructor. simpl.
sigma. now rewrite -H. auto. }
sigma. apply inst_ext. rewrite H.
rewrite -ren_shiftn. sigma. unfold Up. now sigma. tea.
- rewrite rho_equation_8.
destruct (view_lambda_fix_app t u); try inv_on_free_vars.
+
rename b into onfvb. rename a into onfvfix. rename a0 into a.
simpl; simp rho. rewrite rename_mkApps. cbn [rename].
assert (eqargs : map (rename r) (map (rho Γ) (l ++ [a])) =
map (rho Δ) (map (rename r) (l ++ [a]))).
{ rewrite !map_map_compose !map_app. f_equal ⇒ /= //.
2:{ f_equal. now eapply H1. }
unshelve epose proof (All_IH l _ _ _ H); simpl; eauto.
pose proof (depth_mkApps (tFix mfix i) l). lia. solve_all. }
destruct (rho_fix_elim Γ mfix i (l ++ [a])).
simpl. simp rho.
rewrite /unfold_fix /map_fix nth_error_map e /= i0.
simp rho; rewrite /map_fix !nth_error_map /= e /=.
move: i0; rewrite /is_constructor -(map_app (rename r) l [a]) nth_error_map.
destruct (nth_error_spec (l ++ [a]) (rarg d)) ⇒ /= //.
rewrite -isConstruct_app_rename ⇒ → //.
rewrite rename_mkApps.
f_equal; auto.
assert (Hbod: ∀ (Γ Δ : list context_decl) (r : nat → nat),
renaming Γ Δ r → rename r (rho Γ (dbody d)) = rho Δ (rename r (dbody d))).
{ pose proof (H (dbody d)) as Hbod.
forward Hbod.
{ simpl; move: (depth_mkApps (tFix mfix i) l). simpl.
eapply mfixpoint_depth_nth_error in e. lia. }
auto. intros. eapply Hbod; tea.
inv_on_free_vars. eapply All_nth_error in onfvfix; tea.
now move/andP: onfvfix. }
assert (Hren : renaming (Γ ,,, rho_fix_context Γ mfix)
(Δ ,,, rho_fix_context Δ (map (map_def (rename r) (rename (shiftn #|mfix| r))) mfix))
(shiftn #|mfix| r)).
now apply renaming_shift_rho_fix_context.
specialize (Hbod _ _ _ Hren).
rewrite -Hbod.
rewrite !subst_inst.
{ sigma. eapply inst_ext.
rewrite -{1}(rename_inst r).
rewrite -ren_shiftn. sigma.
rewrite Upn_comp ?map_length ?fix_subst_length ?map_length //.
apply subst_consn_proper ⇒ //.
rewrite map_fix_subst //.
intros n. simp rho. simpl. simp rho.
reflexivity.
clear -H Hr Hren onfvfix.
unfold fix_subst. autorewrite with len. generalize #|mfix| at 1 4.
induction n; simpl; auto.
rewrite IHn. clear IHn. f_equal; auto.
specialize (H (tFix mfix n)) as Hbod.
forward Hbod.
{ simpl. move: (depth_mkApps (tFix mfix i) l). simpl. lia. }
simp rho. simpl. simp rho.
specialize (Hbod _ _ _ _ Hr onfvfix).
simpl in Hbod. simp rho in Hbod.
simpl in Hbod; simp rho in Hbod.
rewrite -rename_inst.
rewrite ren_shiftn -(rename_inst (shiftn _ r)).
rewrite Hbod. f_equal.
rewrite /map_fix !map_map_compose. apply map_ext.
intros []; unfold map_def; cbn. f_equal.
f_equal. 2:rewrite -up_Upn ren_shiftn. 2:now sigma.
f_equal. f_equal.
apply map_ext ⇒ x. f_equal.
now rewrite -up_Upn ren_shiftn; sigma. }
simp rho; simpl; simp rho.
rewrite /unfold_fix /map_fix !nth_error_map.
destruct (nth_error mfix i) eqn:hfix ⇒ /=.
assert(is_constructor (rarg d) (l ++ [a]) = false).
red in i0; unfold negb in i0.
destruct is_constructor; auto.
rewrite H2.
rewrite -(map_app (rename r) l [a]) -is_constructor_rename H2 //.
rewrite rename_mkApps.
f_equal. simpl. f_equal.
autorewrite with len.
eapply (map_fix_rho_rename mfix i l); eauto.
intros. eapply H; eauto. rewrite /=. lia.
apply eqargs.
rewrite rename_mkApps. f_equal; auto.
2:{ now rewrite -(map_app (rename r) _ [_]). }
simpl. f_equal. autorewrite with len.
eapply (map_fix_rho_rename mfix i l); eauto.
intros; eapply H; tea; simpl; try lia.
+
inv_on_free_vars. rename a0 into arg. rename b0 into body.
pose proof (rho_app_lambda' Γ na ty body (l ++ [arg])).
simp rho in H2. rewrite mkApps_app in H2.
simpl in H2. simp rho in H2. rewrite {}H2.
simpl.
rewrite rename_mkApps. simpl.
rewrite tApp_mkApps -mkApps_app.
rewrite -(map_app (rename r) _ [_]).
rewrite rho_app_lambda'.
simpl.
assert (All (fun x ⇒ rename r (rho Γ x) = rho Δ (rename r x)) (l ++ [arg])).
{ apply All_app_inv. 2:constructor; auto.
unshelve epose proof (All_IH l _ _ _ H); simpl; eauto.
move: (depth_mkApps (tLambda na ty body) l). lia. solve_all.
eapply H1; tea. }
remember (l ++ [arg]) as args.
destruct args; simpl; simp rho.
{ apply (f_equal (@length _)) in Heqargs. simpl in Heqargs.
autorewrite with len in Heqargs. simpl in Heqargs. lia. }
rewrite rename_inst /subst1 subst_inst.
simpl in H.
specialize (H body).
forward H.
{ move: (depth_mkApps (tLambda na ty body) l) ⇒ /=. lia. }
rewrite inst_mkApps.
specialize (H (vass na (rho Γ ty) :: Γ) (vass na (rho Δ ty.[ren r]) :: Δ) (shiftn 1 r) (shiftnP 1 P)).
forward H. eapply shiftn1_renaming; auto.
sigma. depelim X.
autorewrite with sigma in H, e, X.
f_equal.
rewrite -H //. sigma. apply inst_ext.
rewrite e.
rewrite -ren_shiftn. sigma.
unfold Up. now sigma.
rewrite !map_map_compose. solve_all.
now autorewrite with sigma in H.
+ simpl.
simp rho. pose proof (isFixLambda_app_rename r _ i).
simpl in H2. rewrite (view_lambda_fix_app_other (rename r t) (rename r a0) H2). simpl.
erewrite H0, H1; eauto.
-
simpl; simp rho; simpl.
case e: lookup_env ⇒ [[decl|decl]|] //; simp rho.
case eb: cst_body ⇒ [b|] //; simp rho.
rewrite rename_inst inst_closed0 //.
apply declared_decl_closed in e ⇒ //.
hnf in e. rewrite eb in e. rewrite closedn_subst_instance; auto.
now move/andP: e ⇒ [-> _].
-
simpl; simp rho.
destruct inspect as [[f a] decapp].
destruct inspect as [[f' a'] decapp'].
epose proof (decompose_app_rename decapp).
rewrite → decapp' in H0. noconf H0.
simpl.
assert (map (rename_branch r) (map (rho_br Γ (rho_predicate Γ p)) brs) =
(map (rho_br Δ (rho_predicate Δ (rename_predicate r p))) (map (rename_branch r) brs))).
{ destruct X as [? [? ?]]; red in X0.
simpl in ×. rewrite !map_map_compose /rename_branch
/PCUICSigmaCalculus.rename_branch /rho_br /=.
simpl. solve_all. f_equal.
rewrite /inst_case_branch_context /=.
eapply All_prod_inv in p0 as [].
unshelve epose proof (rename_rho_ctx_over Hr _ _ a2). shelve. solve_all. solve_all.
erewrite b0. reflexivity.
assert (map (rho Δ) (map (rename r) (pparams p)) = (map (rename r) (map (rho Γ) ((pparams p))))).
solve_all. erewrite a0; trea. rewrite H3.
rewrite - rename_inst_case_context_wf //.
len ⇒ //.
eapply shiftn_renaming_eq ⇒ //. now len. tea. }
simpl.
destruct X as [? [? ?]]; cbn in ×. red in X0.
destruct view_construct_cofix; simpl; simp rho.
× destruct (eq_inductive ci ind) eqn:eqi.
simp rho.
destruct inspect as [[br|] eqbr]=> //; simp rho;
destruct (inspect_nth_error_rename (r:=r) eqbr) as [prf ->]; simp rho.
cbv zeta. simp rho.
cbn -[eqb]. autorewrite with len.
case: eqb_specT ⇒ // hlen.
+ erewrite rename_rho_iota_red; tea ⇒ //.
f_equal.
pose proof (decompose_app_inv decapp). subst t.
specialize (H _ _ _ _ Hr p3).
rewrite /= !rho_app_construct /= !rename_mkApps in H.
simpl in H. rewrite rho_app_construct in H.
apply mkApps_eq_inj in H as [_ Heq] ⇒ //.
len; eauto.
{ cbn. len. eapply nth_error_forallb in p4; tea.
move: p4 ⇒ /= /andP[]. rewrite test_context_k_closed_on_free_vars_ctx.
now rewrite closedn_ctx_on_free_vars. }
eapply nth_error_forallb in p4; tea. cbn in p4.
now move/andP: p4.
eapply nth_error_forallb in p4; tea. cbn in p4.
now move/andP: p4.
+ simp rho. simpl. f_equal; auto.
erewrite → rho_rename_pred; tea ⇒ //.
erewrite H; trea.
+ simp rho. simpl. f_equal; eauto.
erewrite → rho_rename_pred; tea ⇒ //.
simp rho.
+ simp rho. simpl. simp rho. f_equal; eauto.
erewrite → rho_rename_pred; tea ⇒ //.
× simpl; simp rho.
rewrite /map_fix !map_map_compose.
rewrite /unfold_cofix !nth_error_map.
apply decompose_app_inv in decapp. subst t.
specialize (H _ _ _ _ Hr p3).
simp rho in H; rewrite !rename_mkApps /= in H. simp rho in H.
eapply mkApps_eq_inj in H as [Heqcof Heq] ⇒ //.
noconf Heqcof. simpl in H.
autorewrite with len in H.
rewrite /map_fix !map_map_compose in H.
case efix: (nth_error mfix idx) ⇒ [d|] /= //.
+ rewrite rename_mkApps !map_map_compose compose_map_def.
f_equal. erewrite → rho_rename_pred; tea ⇒ //.
rewrite !map_map_compose in Heq.
f_equal ⇒ //.
rewrite !subst_inst. sigma.
apply map_eq_inj in H.
epose proof (nth_error_all efix H). cbn in H1.
simpl in H1. apply (f_equal dbody) in H1.
simpl in H1. rewrite -(rename_inst (shiftn _ r)) -(rename_inst r).
rewrite -H1. sigma.
apply inst_ext.
rewrite -ren_shiftn. sigma.
(rewrite Upn_comp ?map_length ?fix_subst_length ?map_length //;
try now autorewrite with len); [].
apply subst_consn_proper ⇒ //.
rewrite map_cofix_subst' //.
intros n'; simp rho. simpl; f_equal. now simp rho.
rewrite map_cofix_subst' //.
simpl. move⇒ n'; f_equal. simp rho; simpl; simp rho.
f_equal. rewrite /map_fix.
rewrite !map_map_compose !compose_map_def.
apply map_ext ⇒ x; apply map_def_eq_spec ⇒ //.
rewrite !map_map_compose.
unfold cofix_subst. generalize #|mfix|.
clear -H.
induction n; simpl; auto. f_equal; auto.
simp rho. simpl. simp rho. f_equal.
rewrite /map_fix !map_map_compose. autorewrite with len.
solve_all.
apply (f_equal dtype) in H. simpl in H.
now sigma; sigma in H. sigma.
rewrite -ren_shiftn. rewrite up_Upn.
apply (f_equal dbody) in H. simpl in H.
sigma in H. now rewrite <-ren_shiftn, up_Upn in H.
now rewrite !map_map_compose in H0.
+ rewrite map_map_compose. f_equal; auto.
{ erewrite → rho_rename_pred; tea ⇒ //. }
{ simp rho. rewrite !rename_mkApps /= !map_map_compose !compose_map_def /=.
simp rho. f_equal. f_equal.
rewrite /map_fix map_map_compose. rewrite -H.
autorewrite with len. reflexivity.
now rewrite -Heq !map_map_compose. }
now rewrite !map_map_compose in H0.
× pose proof (construct_cofix_rename r t0 d).
destruct (view_construct_cofix (rename r t0)); simpl in H1 ⇒ //.
simp rho. simpl.
f_equal; auto.
erewrite rho_rename_pred; tea⇒ //.
now rewrite !map_map_compose in H0. simp rho.
-
simpl.
rewrite !rho_app_proj.
destruct decompose_app as [f a] eqn:decapp.
erewrite (decompose_app_rename decapp).
erewrite <-H; eauto.
apply decompose_app_inv in decapp. subst t.
specialize (H _ _ _ _ Hr ont).
rewrite rename_mkApps in H.
destruct f; simpl; auto.
× destruct n; simpl; auto.
destruct eq_inductive eqn:eqi; simpl; auto.
rewrite nth_error_map.
destruct nth_error eqn:hnth; simpl; auto.
simp rho in H. rewrite rename_mkApps in H.
eapply mkApps_eq_inj in H as [_ Hargs] ⇒ //.
rewrite !map_map_compose in Hargs.
eapply map_eq_inj in Hargs.
apply (nth_error_all hnth Hargs).
× rewrite nth_error_map.
destruct nth_error eqn:hnth; auto.
simpl. rewrite rename_mkApps.
f_equal; auto.
simpl in H; simp rho in H. rewrite rename_mkApps in H.
eapply mkApps_eq_inj in H as [Hcof Hargs] ⇒ //.
f_equal; auto. simpl in Hcof. noconf Hcof. simpl in H.
noconf H.
rewrite /map_fix !map_map_compose in H.
apply map_eq_inj in H.
epose proof (nth_error_all hnth H).
simpl in H0. apply (f_equal dbody) in H0.
simpl in H0. autorewrite with sigma in H0.
rewrite !rename_inst -H0 - !rename_inst.
sigma. autorewrite with len.
apply inst_ext.
rewrite -ren_shiftn. sigma.
(rewrite Upn_comp ?map_length ?fix_subst_length ?map_length //;
try now autorewrite with len); [].
apply subst_consn_proper ⇒ //.
rewrite map_cofix_subst' //.
intros n0. simpl. now rewrite up_Upn.
rewrite !map_map_compose.
unfold cofix_subst. generalize #|mfix|.
clear -H.
induction n; simpl; auto. f_equal; auto.
simp rho. simpl. simp rho. f_equal.
rewrite /map_fix !map_map_compose. autorewrite with len.
eapply All_map_eq, All_impl; tea ⇒ /= //.
intros x.
rewrite !rename_inst ren_shiftn ⇒ <-.
apply map_def_eq_spec; simpl. now sigma. sigma. now len.
-
simpl; simp rho; simpl; simp rho.
f_equal. rewrite /map_fix !map_length !map_map_compose.
red in X0. solve_all.
move/andP: b ⇒ [] onty onbody.
erewrite a0; tea; auto.
move/andP: b ⇒ [] onty onbody.
assert (#|m| = #|fold_fix_context rho Γ [] m|). rewrite fold_fix_context_length /= //.
erewrite <-b0; trea.
rewrite {2}H.
eapply shift_renaming; auto.
clear. generalize #|m|. induction m using rev_ind. simpl. constructor.
intros. rewrite map_app !fold_fix_context_app. simpl. constructor. simpl. reflexivity. apply IHm.
-
simpl; simp rho; simpl; simp rho.
f_equal. rewrite /map_fix !map_length !map_map_compose.
red in X0. solve_all.
move/andP: b ⇒ [] onty onbody.
erewrite a0; tea; auto.
move/andP: b ⇒ [] onty onbody.
assert (#|m| = #|fold_fix_context rho Γ [] m|). rewrite fold_fix_context_length /= //.
erewrite <-b0; trea.
rewrite {2}H.
eapply shift_renaming; auto.
clear. generalize #|m|. induction m using rev_ind. simpl. constructor.
intros. rewrite map_app !fold_fix_context_app. simpl. constructor. simpl. reflexivity. apply IHm; eauto.
Qed.
Lemma rho_lift0 Γ Δ P t :
on_free_vars P t →
lift0 #|Δ| (rho Γ t) = rho (Γ ,,, Δ) (lift0 #|Δ| t).
Proof using wfΣ.
rewrite !lift_rename. eapply rho_rename.
red. intros x. destruct nth_error eqn:Heq.
unfold lift_renaming. simpl. rewrite Nat.add_comm.
rewrite nth_error_app_ge. lia. rewrite Nat.add_sub Heq.
destruct c as [na [b|] ty]; simpl in *; auto.
∃ b. split; eauto.
rewrite -ren_shiftk. rewrite shiftk_compose. reflexivity.
unfold lift_renaming. simpl. rewrite Nat.add_comm.
rewrite nth_error_app_ge. lia. now rewrite Nat.add_sub Heq.
Qed.
Lemma rho_ctx_over_app Γ' Γ Δ :
rho_ctx_over Γ' (Γ ,,, Δ) =
rho_ctx_over Γ' Γ ,,, rho_ctx_over (Γ' ,,, rho_ctx_over Γ' Γ) Δ.
Proof using Type.
induction Δ; simpl; auto.
destruct a as [na [b|] ty]. simpl. f_equal; auto.
now rewrite IHΔ app_context_assoc.
now rewrite IHΔ app_context_assoc.
Qed.
Lemma rho_ctx_app Γ Δ : rho_ctx (Γ ,,, Δ) = rho_ctx Γ ,,, rho_ctx_over (rho_ctx Γ) Δ.
Proof using Type.
induction Δ; simpl; auto.
destruct a as [na [b|] ty]; simpl; f_equal; auto.
now rewrite -IHΔ.
now rewrite -IHΔ.
Qed.
Lemma fold_fix_context_over_acc p Γ m acc :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
rho_ctx_over (Γ ,,, acc)
(List.rev (mapi_rec (fun (i : nat) (d : def term) ⇒ vass (dname d) ((lift0 i) (dtype d))) m #|acc|))
++ acc =
fold_fix_context rho Γ acc m.
Proof using wfΣ.
generalize #|m| ⇒ n.
induction m in Γ, acc |- *; simpl; auto.
move/andP ⇒ [] ha hm.
rewrite rho_ctx_over_app. simpl.
unfold app_context. unfold app_context in IHm.
erewrite <- IHm ⇒ //.
rewrite - app_assoc. cbn. f_equal.
apply fold_context_Proper. intros Δ d.
apply map_decl_ext ⇒ x.
rewrite (rho_lift0 _ _ p); auto. now move/andP: ha.
repeat f_equal. rewrite (rho_lift0 _ _ p); auto.
now move/andP: ha.
Qed.
Lemma fold_fix_context_rho_ctx p Γ m :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
rho_ctx_over Γ (fix_context m) =
fold_fix_context rho Γ [] m.
Proof using wfΣ.
intros hm.
rewrite <- (fold_fix_context_over_acc p); now rewrite ?app_nil_r.
Qed.
Definition fold_fix_context_alt Γ m :=
mapi (fun k def ⇒ vass def.(dname) (lift0 k (rho Γ def.(dtype)))) m.
Lemma fix_context_fold p Γ m :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
fix_context (map (map_def (rho Γ)
(rho (Γ ,,, rho_ctx_over Γ (fix_context m)))) m) =
rho_ctx_over Γ (fix_context m).
Proof using wfΣ.
intros hm.
unfold fix_context. rewrite mapi_map. simpl.
rewrite (fold_fix_context_rho_ctx p); auto.
rewrite fold_fix_context_rev_mapi. simpl.
now rewrite app_nil_r.
Qed.
Lemma fix_context_map_fix p Γ mfix :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|mfix| p))) mfix →
fix_context (map_fix rho Γ (rho_ctx_over Γ (fix_context mfix)) mfix) =
rho_ctx_over Γ (fix_context mfix).
Proof using wfΣ.
intros hm.
rewrite - (fix_context_fold p) //.
unfold map_fix. f_equal.
f_equal. f_equal. rewrite (fix_context_fold p) //.
Qed.
Lemma rho_cofix_subst p Γ mfix :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|mfix| p))) mfix →
cofix_subst (map_fix rho Γ (rho_ctx_over Γ (fix_context mfix)) mfix)
= (map (rho Γ) (cofix_subst mfix)).
Proof using wfΣ.
intros hm.
unfold cofix_subst. unfold map_fix at 2. rewrite !map_length.
induction #|mfix| at 1 2. reflexivity. simpl. simp rho. simpl.
simp rho. rewrite - (fold_fix_context_rho_ctx p) //. f_equal. apply IHn.
Qed.
Lemma rho_fix_subst p Γ mfix :
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|mfix| p))) mfix →
fix_subst (map_fix rho Γ (rho_ctx_over Γ (fix_context mfix)) mfix)
= (map (rho Γ) (fix_subst mfix)).
Proof using wfΣ.
intros hm. unfold fix_subst. unfold map_fix at 2. rewrite !map_length.
induction #|mfix| at 1 2. reflexivity. simpl. simp rho; simpl; simp rho.
rewrite -(fold_fix_context_rho_ctx p) //. f_equal. apply IHn.
Qed.
Lemma nth_error_cofix_subst mfix n b :
nth_error (cofix_subst mfix) n = Some b →
b = tCoFix mfix (#|mfix| - S n).
Proof using Type.
unfold cofix_subst.
generalize #|mfix|. induction n0 in n, b |- ×. simpl.
destruct n; simpl; congruence.
destruct n; simpl. intros [= <-]. f_equal.
destruct n0; simpl; try reflexivity.
intros H. now specialize (IHn0 _ _ H).
Qed.
Lemma nth_error_fix_subst mfix n b :
nth_error (fix_subst mfix) n = Some b →
b = tFix mfix (#|mfix| - S n).
Proof using Type.
unfold fix_subst.
generalize #|mfix|. induction n0 in n, b |- ×. simpl.
destruct n; simpl; congruence.
destruct n; simpl. intros [= <-]. f_equal.
destruct n0; simpl; try reflexivity.
intros H. now specialize (IHn0 _ _ H).
Qed.
Lemma ctxmap_cofix_subst:
∀ (Γ' : context) (mfix1 : mfixpoint term),
ctxmap (Γ' ,,, fix_context mfix1) Γ' (cofix_subst mfix1 ⋅n ids).
Proof using Type.
intros Γ' mfix1.
intros x d' Hnth.
destruct (leb_spec_Set #|fix_context mfix1| x).
rewrite nth_error_app_ge // in Hnth.
rewrite fix_context_length in l Hnth.
destruct d' as [na [b'|] ty]; simpl; auto.
rewrite subst_consn_ge cofix_subst_length //.
unfold ids. eexists _, _; split; eauto.
rewrite Hnth. split; simpl; eauto.
apply inst_ext.
rewrite /subst_compose. simpl. intros v.
rewrite subst_consn_ge ?cofix_subst_length. lia.
unfold shiftk. f_equal. lia.
rewrite nth_error_app_lt in Hnth ⇒ //.
pose proof (fix_context_assumption_context mfix1).
destruct d' as [na [b'|] ty]; simpl; auto.
elimtype False. eapply nth_error_assumption_context in H; eauto.
simpl in H; discriminate.
Qed.
Lemma ctxmap_fix_subst:
∀ (Γ' : context) (mfix1 : mfixpoint term),
ctxmap (Γ' ,,, fix_context mfix1) Γ' (fix_subst mfix1 ⋅n ids).
Proof using Type.
intros Γ' mfix1.
intros x d' Hnth.
destruct (leb_spec_Set #|fix_context mfix1| x).
rewrite nth_error_app_ge // in Hnth.
rewrite fix_context_length in l Hnth.
destruct d' as [na [b'|] ty]; simpl; auto.
rewrite subst_consn_ge fix_subst_length //.
unfold ids. eexists _, _; split; eauto.
rewrite Hnth. split; simpl; eauto.
apply inst_ext.
rewrite /subst_compose. simpl. intros v.
rewrite subst_consn_ge ?fix_subst_length. lia.
unfold shiftk. f_equal. lia.
rewrite nth_error_app_lt in Hnth ⇒ //.
pose proof (fix_context_assumption_context mfix1).
destruct d' as [na [b'|] ty]; simpl; auto.
elimtype False. eapply nth_error_assumption_context in H; eauto.
simpl in H; discriminate.
Qed.
Lemma rho_triangle_All_All2_ind:
∀ (Γ : context) (brs : list (nat × term)),
pred1_ctx Σ Γ (rho_ctx Γ) →
All (fun x ⇒ pred1_ctx Σ Γ (rho_ctx Γ) → pred1 Σ Γ (rho_ctx Γ) (snd x) (rho (rho_ctx Γ) (snd x)))
brs →
All2 (on_Trel_eq (pred1 Σ Γ (rho_ctx Γ)) snd fst) brs
(map (fun x ⇒ (fst x, rho (rho_ctx Γ) (snd x))) brs).
Proof using Type.
intros. rewrite - {1}(map_id brs). eapply All2_map, All_All2; eauto.
Qed.
Lemma rho_triangle_All_All2_ind_terms:
∀ (Γ Γ' Γ'0 : context) (args0 args1 : list term),
pred1_ctx Σ Γ Γ' →
pred1_ctx Σ Γ' Γ'0 →
All2 (fun x y ⇒
(pred1 Σ Γ Γ' x y ×
((on_ctx_free_vars xpredT Γ →
on_free_vars xpredT x →
∀ Γ'0, pred1_ctx Σ Γ' Γ'0 →
pred1 Σ Γ' Γ'0 y (rho Γ'0 x))%type)))
args0 args1 →
on_ctx_free_vars xpredT Γ →
forallb (on_free_vars xpredT) args0 →
All2 (pred1 Σ Γ' Γ'0) args1 (map (rho Γ'0) args0).
Proof using Type.
intros. rewrite - {1}(map_id args1).
eapply All2_sym; solve_all.
Qed.
Lemma isConstruct_app_pred1 {Γ Δ a b} : pred1 Σ Γ Δ a b → isConstruct_app a → isConstruct_app b.
Proof using Type.
move⇒ pr; rewrite /isConstruct_app.
move e: (decompose_app a) ⇒ [hd args].
apply decompose_app_inv in e. subst a. simpl.
case: hd pr ⇒ // ind n ui.
move/pred1_mkApps_tConstruct ⇒ [args' [-> Hargs']] _.
rewrite decompose_app_mkApps //.
Qed.
Lemma is_constructor_pred1 Γ Γ' n l l' :
All2 (pred1 Σ Γ Γ') l l' →
is_constructor n l → is_constructor n l'.
Proof using Type.
induction 1 in n |- ×.
- now rewrite /is_constructor nth_error_nil.
- destruct n; rewrite /is_constructor /=.
now eapply isConstruct_app_pred1.
eapply IHX.
Qed.
Ltac inv_on_free_vars ::=
match goal with
| [ H : is_true (on_free_vars ?P ?t) |- _ ] ⇒
progress (cbn in H || rewrite → on_free_vars_mkApps in H);
(move/and5P: H ⇒ [] || move/and4P: H ⇒ [] || move/and3P: H ⇒ [] || move/andP: H ⇒ [] ||
eapply forallb_All in H); intros
| [ H : is_true (test_def (on_free_vars ?P) ?Q ?x) |- _ ] ⇒
let H0 := fresh in let H' := fresh in
move/andP: H ⇒ [H0 H'];
try rewrite → shiftnP_xpredT in H0;
try rewrite → shiftnP_xpredT in H'; intros
end.
Lemma pred1_on_free_vars_mfix_ind Γ Γ' P mfix0 mfix1 :
on_ctx_free_vars P Γ →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix0| P)) x) mfix0 →
All2_prop2_eq Γ Γ' (Γ,,, fix_context mfix0) (Γ',,, fix_context mfix1)
dtype dbody (fun x : def term ⇒ (dname x, rarg x))
(fun (Γ Γ' : context) (x y : term) ⇒
pred1 Σ Γ Γ' x y ×
(∀ P : nat → bool,
on_ctx_free_vars P Γ → on_free_vars P x → on_free_vars P y)) mfix0
mfix1 →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix1| P)) x) mfix1.
Proof using Type.
intros onΓ a a'; red in a'. rewrite -(All2_length a').
assert (on_ctx_free_vars (shiftnP #|mfix0| P) (Γ,,, fix_context mfix0)) by eauto with fvs.
solve_all.
inv_on_free_vars. destruct a0. apply/andP; split; eauto with fvs.
Qed.
Hint Resolve on_ctx_free_vars_snoc_ass on_ctx_free_vars_snoc_def : fvs.
Lemma pred1_on_free_vars_gen :
(∀ Γ Γ' t u,
pred1 Σ Γ Γ' t u →
∀ P,
on_ctx_free_vars P Γ →
on_free_vars P t → on_free_vars P u) ×
(∀ Γ Γ' Δ Δ',
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
∀ P,
on_ctx_free_vars P (Γ ,,, Δ) →
on_ctx_free_vars P (Γ' ,,, Δ')).
Proof using wfΣ.
set Pctx :=
fun (Γ Δ : context) ⇒
∀ P, on_ctx_free_vars P Γ → on_ctx_free_vars P Δ.
set Pctxover :=
fun (Γ Γ' Δ Δ' : context) ⇒
∀ P,
on_ctx_free_vars P (Γ ,,, Δ) →
on_ctx_free_vars P (Γ' ,,, Δ').
Ltac IHs :=
match goal with
[ H : ∀ P, is_true (on_ctx_free_vars P ?Γ) → is_true (on_free_vars P ?t) → _,
H' : is_true (on_ctx_free_vars _ ?Γ),
H'' : is_true (on_free_vars _ ?t) |- _ ] ⇒
specialize (H _ H' H'')
end.
Ltac t := repeat IHs; rtoProp; intuition eauto with fvs.
apply: (pred1_ind_all_ctx _ _ Pctx Pctxover); subst Pctx Pctxover; cbn -[on_ctx_free_vars]; intros; auto.
all:try solve [t].
- move: H; rewrite /on_ctx_free_vars.
generalize 0. clear X.
induction X0 in P |- *; simpl; auto.
intros n.
move/andP ⇒ [] Hd HΓ.
apply/andP; split.
destruct (P n) ⇒ //.
rewrite /= in Hd ×.
{ destruct p; cbn in Hd |- ×.
specialize (i (addnP (S n) P)).
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars in i.
setoid_rewrite addnP_add in i.
setoid_rewrite Nat.add_comm in i.
setoid_rewrite Nat.add_succ_r in i.
eauto.
specialize (i (addnP (S n) P)).
specialize (i0 (addnP (S n) P)).
move/andP: Hd ⇒ /= [onb ont].
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars in i i0.
setoid_rewrite addnP_add in i.
setoid_rewrite Nat.add_comm in i.
setoid_rewrite Nat.add_succ_r in i.
setoid_rewrite addnP_add in i0.
setoid_rewrite Nat.add_comm in i0.
setoid_rewrite Nat.add_succ_r in i0.
eauto with fvs. }
now specialize (IHX0 P (S n) HΓ).
- move: H0.
rewrite !on_ctx_free_vars_app.
move/andP⇒ [] onΔ onΓ. specialize (H _ onΓ).
rewrite -(All2_fold_length X2) H andb_true_r.
clear H. move: onΓ.
move: onΔ; rewrite /on_ctx_free_vars.
generalize 0. clear -X2.
induction X2 in P |- *; simpl; auto.
intros n.
move/andP ⇒ [] Hd HΓ' HΓ.
apply/andP; split.
destruct (P n) ⇒ //.
rewrite /= in Hd ×.
{ destruct p; cbn in Hd |- ×.
- specialize (i (addnP (S n) P)).
forward i.
rewrite on_ctx_free_vars_app.
rewrite alli_shift in HΓ'.
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars.
setoid_rewrite addnP_add.
setoid_rewrite Nat.add_comm.
setoid_rewrite Nat.add_succ_r.
rewrite HΓ' /=.
red. rewrite -HΓ. apply alli_ext ⇒ i' d.
rewrite addnP_add {1 4}/addnP !addnP_add. lia_f_equal.
eauto.
- specialize (i (addnP (S n) P)).
specialize (i0 (addnP (S n) P)).
assert (onext : on_ctx_free_vars (addnP (S n) P) (Γ ,,, Γ0)).
{ rewrite on_ctx_free_vars_app.
rewrite alli_shift in HΓ'.
rewrite alli_shift in HΓ.
rewrite /on_ctx_free_vars.
setoid_rewrite addnP_add.
setoid_rewrite Nat.add_comm.
setoid_rewrite Nat.add_succ_r.
rewrite HΓ' /=.
red. rewrite -HΓ. apply alli_ext ⇒ i' d.
rewrite addnP_add {1 4}/addnP !addnP_add. lia_f_equal. }
move/andP: Hd ⇒ /= [onb ont].
specialize (i onext onb).
specialize (i0 onext ont).
eauto with fvs. }
apply (IHX2 P (S n) HΓ').
rewrite (alli_shiftn 1).
red; rewrite -HΓ.
apply alli_ext ⇒ i ?.
rewrite !addnP_add {1 3}/addnP. lia_f_equal.
- repeat t. eapply on_free_vars_subst; cbn; t.
- move/and3P: H3 ⇒ [] ond0 ont0 onb0; t.
eapply on_free_vars_subst; cbn; t.
- specialize (H _ H1).
rewrite on_free_vars_lift0 //.
change P with (addnP 0 P) in H.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_on_free_vars_ctx in H; tea.
destruct c as [na [decl|] ty] ⇒ //. noconf H0.
now move/andP: H.
- move/and4P: H3 ⇒ [] hpars hret hctx /andP[] hargs hbrs.
rewrite /iota_red.
eapply on_free_vars_subst.
{ rewrite forallb_rev forallb_skipn //.
inv_on_free_vars. solve_all; eauto with fvs. }
len.
eapply All2_nth_error_Some_right in X2 as [t' [hnth [? [[? ?] ?]]]]; tea.
eapply nth_error_forallb in hbrs; tea. cbn in hbrs.
move/andP: hbrs ⇒ [] hctx' hbody.
rewrite skipn_length; try lia. rewrite H1.
replace (ci_npar ci + context_assumptions (bcontext br) - ci_npar ci)
with (context_assumptions (bcontext br)) by lia.
eapply on_free_vars_expand_lets_k.
now len.
eapply on_free_vars_ctx_inst_case_context; trea; len; eauto with fvs.
solve_all.
rewrite -e.
now rewrite -(All2_length X1). len. eapply i0.
rewrite /inst_case_branch_context. rewrite -e; t.
now rewrite -e.
- inv_on_free_vars. t.
rewrite on_free_vars_mkApps.
specialize (H _ H3). t. inv_on_free_vars.
2:solve_all.
move: H1.
rewrite /unfold_fix. destruct nth_error eqn:hnth ⇒ //.
intros [= <- <-].
assert (on_ctx_free_vars (shiftnP #|mfix0| P) (Γ,,, fix_context mfix0)) by t.
assert (forallb (test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix1| P))) mfix1).
{ solve_all. eapply All2_All_mix_left in X1; tea.
rewrite -(All2_length X1).
unfold on_Trel in *; solve_all.
inv_on_free_vars. apply /andP; split; eauto with fvs. }
eapply on_free_vars_subst.
eapply (on_free_vars_fix_subst _ _ idx). cbn ⇒ //.
len. eapply nth_error_forallb in H4; tea.
now move/andP: H4 ⇒ [].
- move/and4P: H7 ⇒ [] ⇒ onpars onpret onctx /andP[] onargs onbrs.
inv_on_free_vars. cbn in a.
assert (on_ctx_free_vars (shiftnP #|p0.(pcontext)| P) (Γ,,, PCUICCases.inst_case_predicate_context p0)).
{ apply on_ctx_free_vars_inst_case_context; eauto. }
rewrite -H3 -(All2_length X3).
solve_all.
rewrite on_free_vars_mkApps. apply/andP; split; solve_all.
eapply pred1_on_free_vars_mfix_ind in X1; tea.
move: H1. rewrite /unfold_cofix.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_all in hnth; tea.
intros [= <- <-].
eapply on_free_vars_subst.
eapply (on_free_vars_cofix_subst _ _ idx); cbn; tea. solve_all.
cbn in hnth. now len; inv_on_free_vars.
rewrite -b //; eauto with fvs.
rewrite -b //; eauto with fvs. eapply b0; eauto with fvs.
eapply on_ctx_free_vars_inst_case_context; tea; solve_all.
- inv_on_free_vars. cbn in a.
rewrite on_free_vars_mkApps. apply/andP; split; solve_all.
eapply pred1_on_free_vars_mfix_ind in X1; tea.
move: H1. rewrite /unfold_cofix.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_all in hnth; tea.
intros [= <- <-].
eapply on_free_vars_subst.
eapply (on_free_vars_cofix_subst _ _ idx); cbn; tea. solve_all.
cbn in hnth. now len; inv_on_free_vars.
- eapply declared_constant_closed_body in H0; tea.
rewrite on_free_vars_subst_instance.
now eapply closed_on_free_vars.
- inv_on_free_vars.
eapply (All2_apply P) in X1.
eapply All2_apply_arrow in X1 ⇒ //. cbn in X1.
eapply All2_apply_dep_All in X1 ⇒ //. 2:solve_all.
now eapply nth_error_all in X1; tea.
- rewrite -H1 -(All2_length X0). t. solve_all.
solve_all. rewrite -b; t. eapply b0. rewrite -b /inst_case_branch_context; t.
eapply on_ctx_free_vars_inst_case_context; t. solve_all.
now rewrite -b.
- eapply pred1_on_free_vars_mfix_ind in X1; tea; solve_all.
- eapply pred1_on_free_vars_mfix_ind in X1; tea; solve_all.
- eapply All2_prod_inv in X0 as [? X0].
eapply (All2_apply P), (All2_apply_arrow H0) in X0.
solve_all.
Qed.
Lemma pred1_on_free_vars {P Γ Γ' t u} :
pred1 Σ Γ Γ' t u →
on_ctx_free_vars P Γ →
on_free_vars P t →
on_free_vars P u.
Proof using wfΣ.
intros p onΓ ont.
now move: (fst pred1_on_free_vars_gen _ _ _ _ p P onΓ ont).
Qed.
Lemma pred1_on_ctx_free_vars {P Γ Γ'} :
pred1_ctx Σ Γ Γ' →
on_ctx_free_vars P Γ →
on_ctx_free_vars P Γ'.
Proof using wfΣ.
intros p onΓ.
epose proof (snd pred1_on_free_vars_gen _ _ [] [] p).
forward H. constructor. now apply H.
Qed.
Lemma pred1_on_free_vars_ctx {P Γ Γ'} :
pred1_ctx Σ Γ Γ' →
on_free_vars_ctx P Γ →
on_free_vars_ctx P Γ'.
Proof using wfΣ.
intros p onΓ.
rewrite -on_free_vars_ctx_on_ctx_free_vars.
epose proof (snd pred1_on_free_vars_gen _ _ [] [] p).
forward H. constructor. apply H.
now rewrite /= -(All2_fold_length p) on_free_vars_ctx_on_ctx_free_vars.
Qed.
Lemma pred1_over_on_ctx_free_vars {P Γ Γ' Δ Δ'} :
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
on_ctx_free_vars P (Γ ,,, Δ) →
on_ctx_free_vars P (Γ' ,,, Δ').
Proof using wfΣ.
intros p p' onΓ.
now apply (snd pred1_on_free_vars_gen _ _ _ _ p p' P).
Qed.
Lemma on_free_vars_subst_consn P s x :
forallb (on_free_vars P) s →
on_free_vars xpredT ((s ⋅n ids) x).
Proof using Type.
rewrite /subst_consn ⇒ hs.
destruct nth_error eqn:hnth ⇒ //.
eapply nth_error_forallb in hs; tea; cbn in ×.
eapply on_free_vars_impl; tea ⇒ //.
Qed.
Hint Resolve pred1_on_free_vars pred1_on_ctx_free_vars : fvs.
Lemma pred1_on_free_vars_mfix Γ Γ' P mfix0 mfix1 :
on_ctx_free_vars P Γ →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix0| P)) x) mfix0 →
All2_prop2_eq Γ Γ' (Γ,,, fix_context mfix0) (Γ',,, fix_context mfix1)
dtype dbody (fun x : def term ⇒ (dname x, rarg x))
(fun (Γ Γ' : context) (x y : term) ⇒
pred1 Σ Γ Γ' x y) mfix0 mfix1 →
All (fun x : def term ⇒ test_def (on_free_vars P) (on_free_vars (shiftnP #|mfix1| P)) x) mfix1.
Proof using wfΣ.
intros onΓ a a'.
pose proof (on_ctx_free_vars_fix_context _ _ _ a onΓ).
red in a'. rewrite -(All2_length a').
solve_all. inv_on_free_vars; unfold on_Trel in *; rewrite /test_def; rtoProp; intuition auto.
eauto with fvs. eapply pred1_on_free_vars; tea.
Qed.
Lemma lift0_inst_id k t s : #|s| < k → (lift0 k t).[s ⋅n ids] = lift0 (k - #|s|) t.
Proof using Type.
intros Hs. sigma.
apply inst_ext.
(rewrite shift_subst_consn_ge; try by lia); [].
now sigma.
Qed.
Lemma pred_subst_rho_cofix (Γ Γ' rΓ : context) (mfix0 mfix1 : mfixpoint term) idx :
on_free_vars xpredT (tCoFix mfix0 idx) →
on_ctx_free_vars xpredT Γ →
pred1_ctx Σ Γ Γ' → pred1_ctx Σ Γ' rΓ →
pred1_ctx_over Σ Γ' rΓ (fix_context mfix1)
(rho_ctx_over rΓ (fix_context mfix0)) →
All2 (on_Trel eq (fun x : def term ⇒ (dname x, rarg x)))
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ Γ Γ' x y
× pred1 Σ Γ' rΓ y
(rho rΓ x)) dtype)
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ
(Γ ,,, fix_context mfix0)
(Γ' ,,, fix_context mfix1) x
y
× pred1 Σ
(Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) y
(rho (rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) x))
dbody) mfix0 mfix1
→ pred1_subst (Σ := Σ) xpredT xpredT (Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) Γ' rΓ
(cofix_subst mfix1 ⋅n ids)
(cofix_subst (map_fix rho rΓ (rho_ctx_over rΓ (fix_context mfix0)) mfix0) ⋅n ids).
Proof using wfΣ.
intros hm onΓ predΓ predΓ' fctx eqf redr redl.
split ⇒ //. split ⇒ //. eauto with fvs.
intros x _.
split.
{ eapply on_free_vars_subst_consn.
eapply (on_free_vars_cofix_subst _ _ idx).
cbn. eapply All_forallb. eapply pred1_on_free_vars_mfix. tea.
cbn in hm. eapply forallb_All; tea. red. eapply All2_prod.
clear redl; solve_all.
unfold on_Trel in *; solve_all.
eapply All2_mix ⇒ //. clear redr. solve_all.
unfold on_Trel in *; solve_all. }
split.
destruct (leb_spec_Set (S x) #|cofix_subst mfix1|).
2:{ len in l; rewrite !subst_consn_ge //; len; try lia.
all:rewrite (All2_length redl) //. lia.
now eapply pred1_refl_gen.
}
destruct (subst_consn_lt_spec l) as [? [Hb Hb']].
rewrite Hb'.
eapply nth_error_cofix_subst in Hb. subst.
rewrite cofix_subst_length in l.
rewrite -(All2_length eqf) in l.
rewrite -(cofix_subst_length mfix0) in l.
destruct (subst_consn_lt_spec l) as [b' [Hb0 Hb0']].
rewrite (rho_cofix_subst xpredT) //.
pose proof (nth_error_map (rho rΓ) x (cofix_subst mfix0)).
rewrite Hb0 in H. simpl in H.
rewrite /subst_consn H.
eapply nth_error_cofix_subst in Hb0. subst b'.
cbn. rewrite (All2_length eqf).
simp rho; simpl; simp rho.
rewrite -(fold_fix_context_rho_ctx xpredT) //. constructor; auto.
+ rewrite (fix_context_map_fix xpredT) //.
+ red. clear -wfΣ hm eqf redr redl.
eapply All2_sym. apply All2_map_left.
pose proof (All2_mix eqf (All2_mix redr redl)) as X; clear eqf redr redl.
eapply All2_impl; eauto. clear X.
unfold on_Trel in ×. simpl. intros x y.
rewrite (fix_context_map_fix xpredT) //. intuition auto.
+ intros decl. pose proof (fix_context_assumption_context mfix1).
destruct (leb_spec_Set (S x) #|fix_context mfix1|).
rewrite nth_error_app_lt //.
destruct (nth_error (fix_context mfix1) x) eqn:Heq ⇒ // /=; auto.
destruct c as [na [?|] ty] ⇒ //.
move: (nth_error_assumption_context _ _ _ H Heq) ⇒ //.
intros [= <-] ⇒ //.
pose proof (All2_length redl). len in l.
rewrite nth_error_app_ge ?fix_context_length //; try lia.
destruct nth_error eqn:hnth ⇒ //.
intros [= ->]. destruct decl as [na [b|] ty] ⇒ /= //.
eapply nth_error_pred1_ctx in predΓ.
2:erewrite hnth⇒ /= //.
destruct predΓ as [body' [eq pr]].
epose proof (nth_error_pred1_ctx_l _ _ predΓ').
erewrite hnth in X. specialize (X eq_refl) as [body'' [eq' pr']].
∃ body''.
rewrite nth_error_app_ge //; len; try lia. rewrite H0.
split ⇒ //.
rewrite subst_consn_ge. len; lia. len.
rewrite -H0 {1}/ids.
rewrite -inst_assoc.
rewrite -lift0_inst lift0_inst_id. len.
len. replace (S x - #|mfix0|) with (S (x - #|mfix0|)) by lia.
econstructor; tea. now rewrite H0.
Qed.
Lemma pred_subst_rho_fix (Γ Γ' rΓ : context) (mfix0 mfix1 : mfixpoint term) idx :
on_free_vars xpredT (tCoFix mfix0 idx) →
on_ctx_free_vars xpredT Γ →
pred1_ctx Σ Γ Γ' → pred1_ctx Σ Γ' rΓ →
pred1_ctx_over Σ Γ' rΓ (fix_context mfix1)
(rho_ctx_over rΓ (fix_context mfix0)) →
All2 (on_Trel eq (fun x : def term ⇒ (dname x, rarg x)))
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ Γ Γ' x y
× pred1 Σ Γ' rΓ y
(rho rΓ x)) dtype)
mfix0 mfix1
→ All2
(on_Trel
(fun x y : term ⇒ pred1 Σ
(Γ ,,, fix_context mfix0)
(Γ' ,,, fix_context mfix1) x
y
× pred1 Σ
(Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) y
(rho (rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) x))
dbody) mfix0 mfix1
→ pred1_subst (Σ := Σ) xpredT xpredT (Γ' ,,, fix_context mfix1)
(rΓ ,,, rho_ctx_over rΓ (fix_context mfix0)) Γ' rΓ
(fix_subst mfix1 ⋅n ids)
(fix_subst (map_fix rho rΓ (rho_ctx_over rΓ (fix_context mfix0)) mfix0) ⋅n ids).
Proof using wfΣ.
intros hm onΓ predΓ predΓ' fctx eqf redr redl.
split ⇒ //. split ⇒ //. eauto with fvs.
intros x _.
split.
{ eapply on_free_vars_subst_consn.
eapply (on_free_vars_fix_subst _ _ idx).
cbn. eapply All_forallb. eapply pred1_on_free_vars_mfix. tea.
cbn in hm. eapply forallb_All; tea. red. eapply All2_prod.
clear redl; solve_all.
unfold on_Trel in *; solve_all.
eapply All2_mix ⇒ //. clear redr. solve_all.
unfold on_Trel in *; solve_all. }
split.
destruct (leb_spec_Set (S x) #|fix_subst mfix1|).
2:{ len in l; rewrite !subst_consn_ge //; len; try lia.
all:rewrite (All2_length redl) //. lia.
now eapply pred1_refl_gen.
}
destruct (subst_consn_lt_spec l) as [? [Hb Hb']].
rewrite Hb'.
eapply nth_error_fix_subst in Hb. subst.
rewrite fix_subst_length in l.
rewrite -(All2_length eqf) in l.
rewrite -(fix_subst_length mfix0) in l.
destruct (subst_consn_lt_spec l) as [b' [Hb0 Hb0']].
rewrite (rho_fix_subst xpredT) //.
pose proof (nth_error_map (rho rΓ) x (fix_subst mfix0)).
rewrite Hb0 in H. simpl in H.
rewrite /subst_consn H.
eapply nth_error_fix_subst in Hb0. subst b'.
cbn. rewrite (All2_length eqf).
simp rho; simpl; simp rho.
rewrite -(fold_fix_context_rho_ctx xpredT) //. constructor; auto.
+ rewrite (fix_context_map_fix xpredT) //.
+ red. clear -wfΣ hm eqf redr redl.
eapply All2_sym. apply All2_map_left.
pose proof (All2_mix eqf (All2_mix redr redl)) as X; clear eqf redr redl.
eapply All2_impl; eauto. clear X.
unfold on_Trel in ×. simpl. intros x y.
rewrite (fix_context_map_fix xpredT) //. intuition auto.
+ intros decl. pose proof (fix_context_assumption_context mfix1).
destruct (leb_spec_Set (S x) #|fix_context mfix1|).
rewrite nth_error_app_lt //.
destruct (nth_error (fix_context mfix1) x) eqn:Heq ⇒ // /=; auto.
destruct c as [na [?|] ty] ⇒ //.
move: (nth_error_assumption_context _ _ _ H Heq) ⇒ //.
intros [= <-] ⇒ //.
pose proof (All2_length redl). len in l.
rewrite nth_error_app_ge ?fix_context_length //; try lia.
destruct nth_error eqn:hnth ⇒ //.
intros [= ->]. destruct decl as [na [b|] ty] ⇒ /= //.
eapply nth_error_pred1_ctx in predΓ.
2:erewrite hnth⇒ /= //.
destruct predΓ as [body' [eq pr]].
epose proof (nth_error_pred1_ctx_l _ _ predΓ').
erewrite hnth in X. specialize (X eq_refl) as [body'' [eq' pr']].
∃ body''.
rewrite nth_error_app_ge //; len; try lia. rewrite H0.
split ⇒ //.
rewrite subst_consn_ge. len; lia. len.
rewrite -H0 {1}/ids.
rewrite -inst_assoc.
rewrite -lift0_inst lift0_inst_id. len.
len. replace (S x - #|mfix0|) with (S (x - #|mfix0|)) by lia.
econstructor; tea. now rewrite H0.
Qed.
Section All2_telescope.
Context (P : ∀ (Γ Γ' : context), context_decl → context_decl → Type).
Definition telescope := context.
Inductive All2_telescope (Γ Γ' : context) : telescope → telescope → Type :=
| telescope2_nil : All2_telescope Γ Γ' [] []
| telescope2_cons_abs na t t' Δ Δ' :
P Γ Γ' (vass na t) (vass na t') →
All2_telescope (Γ ,, vass na t) (Γ' ,, vass na t') Δ Δ' →
All2_telescope Γ Γ' (vass na t :: Δ) (vass na t' :: Δ')
| telescope2_cons_def na b b' t t' Δ Δ' :
P Γ Γ' (vdef na b t) (vdef na b' t') →
All2_telescope (Γ ,, vdef na b t) (Γ' ,, vdef na b' t') Δ Δ' →
All2_telescope Γ Γ' (vdef na b t :: Δ) (vdef na b' t' :: Δ').
End All2_telescope.
Section All2_telescope_n.
Context (P : ∀ (Γ Γ' : context), context_decl → context_decl → Type).
Context (f : nat → term → term).
Inductive All2_telescope_n (Γ Γ' : context) (n : nat) : telescope → telescope → Type :=
| telescope_n_nil : All2_telescope_n Γ Γ' n [] []
| telescope_n_cons_abs na t t' Δ Δ' :
P Γ Γ' (vass na (f n t)) (vass na (f n t')) →
All2_telescope_n (Γ ,, vass na (f n t)) (Γ' ,, vass na (f n t')) (S n) Δ Δ' →
All2_telescope_n Γ Γ' n (vass na t :: Δ) (vass na t' :: Δ')
| telescope_n_cons_def na b b' t t' Δ Δ' :
P Γ Γ' (vdef na (f n b) (f n t)) (vdef na (f n b') (f n t')) →
All2_telescope_n (Γ ,, vdef na (f n b) (f n t)) (Γ' ,, vdef na (f n b') (f n t'))
(S n) Δ Δ' →
All2_telescope_n Γ Γ' n (vdef na b t :: Δ) (vdef na b' t' :: Δ').
End All2_telescope_n.
Lemma All2_telescope_mapi {P} Γ Γ' Δ Δ' (f : nat → term → term) k :
All2_telescope_n P f Γ Γ' k Δ Δ' →
All2_telescope P Γ Γ' (mapi_rec (fun n ⇒ map_decl (f n)) Δ k)
(mapi_rec (fun n ⇒ map_decl (f n)) Δ' k).
Proof using Type.
induction 1; simpl; constructor; auto.
Qed.
Lemma local_env_telescope P Γ Γ' Δ Δ' :
All2_telescope (on_decls P) Γ Γ' Δ Δ' →
on_contexts_over P Γ Γ' (List.rev Δ) (List.rev Δ').
Proof using Type.
induction 1. simpl. constructor.
- simpl. depelim p. eapply on_contexts_over_app.
repeat constructor ⇒ //.
revert IHX.
generalize (List.rev Δ) (List.rev Δ'). induction 1. constructor.
constructor; auto. depelim p0; constructor;
now rewrite !app_context_assoc.
- simpl. eapply on_contexts_over_app. repeat constructor ⇒ //.
revert IHX.
generalize (List.rev Δ) (List.rev Δ'). induction 1. constructor.
constructor; auto. depelim p0; constructor;
now rewrite !app_context_assoc.
Qed.
Lemma All_All2_telescopei_gen p (Γ Γ' Δ Δ' : context) (m m' : mfixpoint term) :
#|Δ| = #|Δ'| →
on_ctx_free_vars p Γ →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2 (fun (x y : def term) ⇒ (pred1 Σ Γ Γ' (dtype x) (dtype y)) × (dname x = dname y))%type m m' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n)
(Γ ,,, Δ) (Γ' ,,, Δ')
#|Δ|
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m').
Proof using wfΣ.
generalize #|m|. intros n Δlen onΓ' onm.
induction 1 in Δ, Δ', Δlen, onm |- *; cbn. constructor.
intros. destruct r. rewrite e.
move: onm ⇒ /= /andP[] /andP [] onty onbody onl.
repeat constructor.
rewrite {2}Δlen.
eapply weakening_pred1_pred1; eauto.
specialize (IHX (vass (dname y) (lift0 #|Δ| (dtype x)) :: Δ)
(vass (dname y) (lift0 #|Δ'| (dtype y)) :: Δ')).
rewrite {2}Δlen.
unfold snoc. forward IHX. simpl. lia.
forward IHX by auto. cbn.
forward IHX. constructor. apply X0. constructor. simpl.
eapply weakening_pred1_pred1; eauto.
simpl in IHX.
apply IHX.
Qed.
Lemma All_All2_telescopei_gen_rho p (Γ Γ' Δ Δ' : context) (m m' : mfixpoint term) :
#|Δ| = #|Δ'| →
on_ctx_free_vars p Γ' →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2
(fun (x y : def term) ⇒ (pred1 Σ Γ' Γ (dtype x) (rho Γ (dtype y))) × (dname x = dname y))%type m m' →
on_contexts_over (pred1 Σ) Γ' Γ Δ (rho_ctx_over Γ Δ') →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n)
(Γ' ,,, Δ) (Γ ,,, rho_ctx_over Γ Δ')
#|Δ|
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (rho Γ (dtype def))) m').
Proof using wfΣ.
intros.
rewrite -(map_map_compose _ _ _ (fun def ⇒ map_def (rho Γ) (rho Γ) def) (fun def ⇒ vass (dname def) (dtype def))).
eapply All_All2_telescopei_gen; tea. now len.
eapply All2_map_right; solve_all.
Qed.
Lemma All_All2_telescopei p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2 (fun (x y : def term) ⇒ (pred1 Σ Γ Γ' (dtype x) (dtype y)) ×
(dname x = dname y))%type m m' →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n) Γ Γ' 0
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m').
Proof using wfΣ.
specialize (All_All2_telescopei_gen p Γ Γ' [] [] m m'). simpl.
intros. specialize (X eq_refl H H0 X0). forward X. constructor.
apply X.
Qed.
Lemma All_All2_telescopei_rho p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ' →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
All2 (fun (x y : def term) ⇒ (pred1 Σ Γ' Γ (dtype x) (rho Γ (dtype y))) ×
(dname x = dname y))%type m m' →
All2_telescope_n (on_decls (pred1 Σ)) (fun n : nat ⇒ lift0 n) Γ' Γ 0
(map (fun def : def term ⇒ vass (dname def) (dtype def)) m)
(map (fun def : def term ⇒ vass (dname def) (rho Γ (dtype def))) m').
Proof using wfΣ.
intros onΓ' H0 X.
specialize (All_All2_telescopei_gen_rho p Γ Γ' [] [] m m').
intros. specialize (X0 eq_refl onΓ' H0 X).
forward X0. constructor.
apply X0.
Qed.
Lemma rho_All_All2_fold_inv :
∀ Γ Γ' : context, pred1_ctx Σ Γ' Γ → ∀ Δ Δ' : context,
All2_fold (on_decls (on_decls_over (pred1 Σ) Γ' Γ)) Δ
(rho_ctx_over Γ Δ') →
All2_fold
(on_decls
(fun (Δ Δ' : context) (t t' : term) ⇒ pred1 Σ (Γ' ,,, Δ)
(Γ ,,, rho_ctx_over Γ Δ') t
(rho (Γ ,,, rho_ctx_over Γ Δ') t'))) Δ Δ'.
Proof using Type.
intros. induction Δ in Δ', X0 |- *; depelim X0; destruct Δ'; noconf H.
- constructor.
- destruct c as [? [?|] ?]; simpl in *; depelim a0; simpl in *; constructor;
rewrite ?rho_ctx_app.
2:constructor; auto. eapply IHΔ; auto; rewrite !rho_ctx_app; eauto.
apply IHΔ; auto. constructor; auto.
Qed.
Lemma pred1_fix_context p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
pred1_ctx Σ Γ Γ' →
All2 (on_Trel_eq (pred1 Σ Γ Γ') dtype dname) m m' →
pred1_ctx_over Σ Γ Γ' (fix_context m) (fix_context m').
Proof using wfΣ.
intros onΓ' hm HΓ a.
unfold fix_context. unfold map_fix.
eapply local_env_telescope.
rewrite -(mapi_map (fun n decl ⇒ lift_decl n 0 decl) m
(fun def ⇒ vass (dname def) (dtype def))).
rewrite -(mapi_map (fun n decl ⇒ lift_decl n 0 decl) m'
(fun def ⇒ vass (dname def) (dtype def))).
eapply All2_telescope_mapi.
eapply All_All2_telescopei; eauto.
Qed.
Lemma pred1_rho_fix_context_2 p (Γ Γ' : context) (m m' : mfixpoint term) :
on_ctx_free_vars p Γ' →
forallb (test_def (on_free_vars p) (on_free_vars (shiftnP #|m| p))) m →
pred1_ctx Σ Γ' Γ →
All2 (on_Trel_eq (pred1 Σ Γ' Γ) dtype dname) m
(map_fix rho Γ (fold_fix_context rho Γ [] m') m') →
All2_fold
(on_decls (on_decls_over (pred1 Σ) Γ' Γ))
(fix_context m)
(fix_context (map_fix rho Γ (fold_fix_context rho Γ [] m') m')).
Proof using wfΣ.
intros onΓ' hm HΓ a.
eapply pred1_fix_context; tea.
Qed.
Lemma decompose_app_rec_inst s t l :
let (f, a) := decompose_app_rec t l in
inst s f = f →
decompose_app_rec (inst s t) (map (inst s) l) = (f, map (inst s) a).
Proof using Type.
induction t in s, l |- *; simpl; auto; try congruence.
intros →. simpl. reflexivity.
specialize (IHt1 s (t2 :: l)).
destruct decompose_app_rec. intros H. rewrite IHt1; auto.
Qed.
Lemma decompose_app_inst s t f a :
decompose_app t = (f, a) → inst s f = f →
decompose_app (inst s t) = (inst s f, map (inst s) a).
Proof using Type.
generalize (decompose_app_rec_inst s t []).
unfold decompose_app. destruct decompose_app_rec.
move⇒ Heq [= <- <-] Heq'. now rewrite Heq' (Heq Heq').
Qed.
Hint Rewrite decompose_app_inst using auto : lift.
Lemma All2_fold_context_assumptions {P} {Γ Δ} :
All2_fold (on_decls P) Γ Δ →
context_assumptions Γ = context_assumptions Δ.
Proof using Type.
induction 1; simpl; auto. depelim p ⇒ /=; now auto using f_equal.
Qed.
Lemma pred1_subst_consn {Δ Δ' Γ Γ' args0 args1} :
pred1_ctx Σ Γ' Γ →
on_ctx_free_vars xpredT Γ' →
forallb (on_free_vars xpredT) args1 →
#|args1| = #|args0| →
context_assumptions Δ' = #|args0| →
context_assumptions Δ = context_assumptions Δ' →
All2 (pred1 Σ Γ' Γ) args1 args0 →
pred1_subst (Σ := Σ) xpredT xpredT (Γ',,, smash_context [] Δ)
(Γ ,,, smash_context [] Δ') Γ' Γ (args1 ⋅n ids) (args0 ⋅n ids).
Proof using Type.
intros Hpred hlen onΓ' onargs Hctx hΔ Ha.
split ⇒ //. split ⇒ //.
intros i _.
destruct (leb_spec_Set (S i) #|args1|).
pose proof (subst_consn_lt_spec l) as [arg [hnth heq]].
rewrite heq.
split; [|split].
- eapply nth_error_forallb in hnth; tea.
- eapply All2_nth_error_Some in Ha as [t' [hnth' pred]]; tea.
pose proof (subst_consn_lt_spec (nth_error_Some_length hnth')) as [arg' [hnth'' ->]].
rewrite hnth' in hnth''. now noconf hnth''.
- intros decl. case: nth_error_appP ⇒ /= //.
× intros x hnth'. len ⇒ hleni. intros [= <-].
eapply nth_error_smash_context in hnth'.
now rewrite hnth'.
intros ? ?; now rewrite nth_error_nil.
× len.
- rewrite subst_consn_ge //. lia.
pose proof (All2_length Ha). len in H. rewrite H.
rewrite subst_consn_ge //. 1: by len. split ⇒ //.
split ⇒ //.
× eapply pred1_refl_gen ⇒ //.
× intros decl. rewrite nth_error_app_ge. 1: by len. len.
destruct nth_error eqn:hnth' ⇒ /= //.
destruct decl_body eqn:db ⇒ /= //. intros [= <-].
rewrite nth_error_app_ge; len; try lia.
pose proof Hpred as predΓ'.
eapply nth_error_pred1_ctx_l in Hpred; tea.
2:erewrite hnth'; rewrite /= db //.
destruct Hpred as [body' [eq' pr]]. ∃ body'; split ⇒ //.
now rewrite -hΔ. rewrite {1}/ids.
rewrite -inst_assoc -lift0_inst lift0_inst_id. lia.
replace (S i - #|args0|) with (S (i - #|args0|)) by lia.
econstructor; tea. congruence.
Qed.
Lemma context_assumptions_smash_context' acc Γ :
context_assumptions (smash_context acc Γ) = #|smash_context [] Γ| +
context_assumptions acc.
Proof using Type.
induction Γ as [|[na [b|] ty] Γ]; simpl; len; auto;
rewrite context_assumptions_smash_context; now len.
Qed.
Lemma context_assumptions_smash_context'' Γ :
context_assumptions (smash_context [] Γ) = #|smash_context [] Γ|.
Proof using Type.
rewrite context_assumptions_smash_context' /=; lia.
Qed.
Lemma context_assumptions_smash Γ :
context_assumptions Γ = #|smash_context [] Γ|.
Proof using Type.
rewrite -context_assumptions_smash_context''.
now rewrite context_assumptions_smash_context.
Qed.
Lemma pred1_ext Γ Γ' t t' u u' :
t = t' → u = u' → pred1 Σ Γ Γ' t u → pred1 Σ Γ Γ' t' u'.
Proof using Type.
now intros → →.
Qed.
Lemma pred1_expand_lets (Γ Γ' Δ Δ' : context) b b' :
on_ctx_free_vars xpredT Γ →
on_ctx_free_vars xpredT Δ →
on_free_vars xpredT b →
pred1 Σ (Γ ,,, Δ) (Γ' ,,, Δ') b b' →
#|Γ| = #|Γ'| →
pred1 Σ (Γ ,,, smash_context [] Δ) (Γ' ,,, smash_context [] Δ')
(expand_lets Δ b) (expand_lets Δ' b').
Proof using wfΣ.
intros onΓ onΔ onb pred hlen.
induction Δ in onΔ, Γ, onΓ, Γ', hlen, Δ', b, onb, b', pred |- × using ctx_length_rev_ind.
- destruct Δ'. simpl. now rewrite !expand_lets_nil.
eapply pred1_pred1_ctx in pred.
move: (length_of pred). len.
- destruct Δ' using rev_case.
{ eapply pred1_pred1_ctx in pred.
move: (length_of pred). len. }
pose proof (pred1_pred1_ctx _ pred).
apply on_contexts_app_inv in X0 as [].
apply on_contexts_app_inv in a0 as [].
depelim a0. clear a0.
all:simpl; auto.
depelim a1.
× rewrite !(smash_context_app) /=.
rewrite !app_context_assoc in pred.
rewrite on_ctx_free_vars_app in onΔ.
move/andP: onΔ ⇒ [] /= onΔ onass. cbn in onass.
rewrite → !addnP_xpredT, andb_true_r in onass.
assert (on_ctx_free_vars xpredT (Γ ,, vass na t)).
{ pose proof (on_ctx_free_vars_snoc_ass xpredT _ na _ onΓ onass).
now rewrite → shiftnP_xpredT in H. }
specialize (X Γ0 ltac:(reflexivity) _ _ _ _ _ H onΔ onb pred ltac:(len; lia)).
now rewrite !expand_lets_vass !app_context_assoc.
× rewrite !(smash_context_app) /=.
rewrite !app_context_assoc in pred.
rewrite on_ctx_free_vars_app in onΔ.
move/andP: onΔ ⇒ [] /= onΔ onass. cbn in onass.
rewrite → !addnP_xpredT, andb_true_r in onass.
assert (on_ctx_free_vars xpredT (Γ ,, vdef na b0 t)).
{ move/andP: onass ⇒ [] /= onty onb'.
pose proof (on_ctx_free_vars_snoc_def xpredT _ na _ _ onΓ onb' onty).
now rewrite → shiftnP_xpredT in H. }
specialize (X Γ0 ltac:(reflexivity) _ _ _ _ _ H onΔ onb pred ltac:(len; lia)).
rewrite !expand_lets_vdef.
rewrite (expand_lets_subst_comm Γ0 [b0] b).
rewrite (expand_lets_subst_comm l [b'0] b').
change (Γ ,, vdef na b0 t) with (Γ ,,, [vdef na b0 t]) in X.
move/andP: onass ⇒ /= [] onb0 ont.
eapply substitution_let_pred1 in X; tas. len in X. now exact X.
+ rewrite -{1}(subst_empty 0 b0) -{1}(subst_empty 0 b'0); repeat constructor; pcuic.
now rewrite !subst_empty.
+ len. now eapply All2_fold_context_assumptions in a2.
+ constructor; pcuic. repeat constructor ⇒ //.
+ constructor; auto.
+ eapply on_free_vars_ctx_smash ⇒ //.
now rewrite -on_ctx_free_vars_xpredT.
+ len. eapply on_free_vars_expand_lets_k ⇒ //.
{ now eapply All2_fold_context_assumptions in a2. }
{ rewrite -on_ctx_free_vars_xpredT //. }
{ rewrite shiftnP_xpredT //. }
Qed.
Lemma fold_context_cst (ctx : context) : ctx = fold_context (fun _ d ⇒ map_decl id d) ctx.
Proof using Type.
induction ctx; simpl; auto.
now rewrite -IHctx map_decl_id.
Qed.
Lemma All_decls_on_free_vars_map_impl_inv P Q R f d d' :
All_decls P d d' →
on_free_vars_decl R d →
(∀ t t', on_free_vars R t → P t t' → Q t' (f t)) →
All_decls Q d' (map_decl f d).
Proof using Type.
move⇒ [] /=; constructor; auto.
eapply X; eauto with pcuic.
now move/andP: H ⇒ /= [].
now move/andP: H ⇒ /= [].
Qed.
Lemma on_ctx_free_vars_xpredT_snoc d Γ :
on_ctx_free_vars xpredT (d :: Γ) =
on_ctx_free_vars xpredT Γ && on_free_vars_decl xpredT d.
Proof using Type.
rewrite -{1}(shiftnP_xpredT (S #|Γ|)).
now rewrite on_ctx_free_vars_snocS shiftnP_xpredT; bool_congr.
Qed.
Hint Extern 3 (is_true (on_ctx_free_vars xpredT _)) ⇒
rewrite on_ctx_free_vars_xpredT_snoc : fvs.
Hint Extern 3 (is_true (_ && _)) ⇒ apply/andP; idtac : fvs.
Lemma on_ctx_free_vars_xpredT_skipn Γ n :
on_ctx_free_vars xpredT Γ →
on_ctx_free_vars xpredT (skipn n Γ).
Proof using Type.
rewrite -{1}(firstn_skipn n Γ).
now rewrite on_ctx_free_vars_app addnP_xpredT ⇒ /andP[].
Qed.
Lemma pred1_ctx_over_refl_gen Γ Γ' Δ :
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ.
Proof using Type.
intros H.
induction Δ as [|[na [b|] ty] Δ]; constructor; auto.
all:constructor; apply pred1_refl_gen, All2_fold_app ⇒ //.
Qed.
Definition fake_params n : context :=
unfold n (fun x ⇒ {| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};
decl_body := None;
decl_type := tSort Universe.type0 |}).
Lemma context_assumptions_fake_params n :
context_assumptions (fake_params n) = n.
Proof using Type.
induction n; simpl; auto. cbn.
len. now rewrite IHn.
Qed.
Hint Rewrite context_assumptions_fake_params : len.
Lemma pred1_ctx_over_inst_case_context Γ Γ' pars pars' puinst pctx :
pred1_ctx Σ Γ Γ' →
on_ctx_free_vars xpredT Γ →
forallb (on_free_vars xpredT) pars →
on_free_vars_ctx (shiftnP #|pars| xpredT) pctx →
All2 (pred1 Σ Γ Γ') pars pars' →
pred1_ctx_over Σ Γ Γ'
(inst_case_context pars puinst pctx)
(inst_case_context pars' puinst pctx).
Proof using wfΣ.
intros pr onctx onpars onpctx a.
assert (clpars' : forallb (on_free_vars xpredT) (List.rev pars)).
{ rewrite forallb_rev //. }
rewrite /inst_case_context.
rewrite !subst_context0_inst_context.
eapply strong_substitutivity with (P := xpredT) (Q := xpredT).
instantiate (1 := Γ' ,,, smash_context [] (fake_params #|pars|)).
instantiate (1 := Γ ,,, smash_context [] (fake_params #|pars|)).
eapply All2_fold_app ⇒ //.
now eapply pred1_ctx_over_refl_gen.
eapply pred1_ctx_over_refl_gen.
eapply All2_fold_app ⇒ //.
now eapply pred1_ctx_over_refl_gen.
rewrite on_free_vars_ctx_subst_instance; tea.
now rewrite → shiftnP_xpredT in onpctx.
erewrite <- on_free_vars_ctx_on_ctx_free_vars.
erewrite shiftnP_xpredT ⇒ //.
rewrite -subst_context0_inst_context.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_subst_context_xpredT ⇒ //.
rewrite on_free_vars_ctx_subst_instance //.
now rewrite → shiftnP_xpredT in onpctx.
eapply pred1_subst_consn; tea; eauto with fvs.
- len. now rewrite (All2_length a).
- len. rewrite context_assumptions_fake_params. now rewrite (All2_length a).
- now eapply All2_rev.
Qed.
Lemma rho_inst_case_context Γ Γ' rΓ pars pars' puinst pctx :
pred1_ctx Σ Γ Γ' →
pred1_ctx Σ Γ' rΓ →
on_ctx_free_vars xpredT Γ →
forallb (on_free_vars xpredT) pars →
on_free_vars_ctx (shiftnP #|pars| xpredT) pctx →
All2 (fun x y : term ⇒
pred1 Σ Γ Γ' x y ×
(on_ctx_free_vars xpredT Γ →
on_free_vars xpredT x →
∀ rΓ, pred1_ctx Σ Γ' rΓ →
pred1 Σ Γ' rΓ y (rho rΓ x))) pars pars' →
pred1_ctx_over Σ Γ' rΓ
(inst_case_context pars' puinst pctx)
(inst_case_context (map (rho rΓ) pars) puinst pctx).
Proof using wfΣ.
intros pr pr' onctx onpars onpctx a.
eapply pred1_ctx_over_inst_case_context ⇒ //; eauto with fvs.
{ solve_all; eauto with fvs. }
now rewrite -(All2_length a).
eapply All2_map_right, All2_sym; solve_all.
Qed.
Ltac my_rename_hyp h th :=
match th with
| pred1 _ _ _ ?b _ ⇒ fresh "pred" b
| is_true (on_ctx_free_vars _ _) → _ ⇒ fresh "pred" th
| _ ⇒ PCUICParallelReduction.my_rename_hyp h th
end.
Ltac rename_hyp h ht ::= my_rename_hyp h ht.
Lemma All2_fold_fold_context_right P f (ctx ctx' : context) :
All2_fold (fun Γ Γ' d d' ⇒ P Γ (fold_context_term f Γ') d (map_decl (f (fold_context_term f Γ')) d')) ctx ctx' →
All2_fold P ctx (fold_context_term f ctx').
Proof using Type.
induction 1; cbn; constructor; auto.
Qed.
Lemma All_decls_map_right P d f d' :
All_decls (fun t t' ⇒ P t (f t')) d d' →
All_decls P d (map_decl f d').
Proof using Type.
case; constructor ⇒ //.
Qed.
Theorem triangle_gen :
(∀ Γ Δ t u, pred1 Σ Γ Δ t u →
on_ctx_free_vars xpredT Γ →
on_free_vars xpredT t →
∀ Γ', pred1_ctx Σ Δ Γ' →
pred1 Σ Δ Γ' u (rho Γ' t)) ×
(∀ Γ Γ' Δ Δ',
pred1_ctx Σ Γ Γ' →
pred1_ctx_over Σ Γ Γ' Δ Δ' →
on_ctx_free_vars xpredT (Γ ,,, Δ) →
∀ Γ'0, pred1_ctx Σ Γ' Γ'0 →
pred1_ctx_over Σ Γ' Γ'0 Δ' (rho_ctx_over Γ'0 Δ)).
Proof using wfΣ with solve_discr.
set Pctx := fun (Γ Δ : context) ⇒
on_ctx_free_vars xpredT Γ →
pred1_ctx Σ Δ (rho_ctx Γ).
refine (pred1_ind_all_ctx Σ _ Pctx _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);
subst Pctx; intros ×.
all:try intros **; rename_all_hyps;
try solve [specialize (forall_Γ _ X3); eauto]; eauto;
try solve [simpl; econstructor; simpl; eauto]; repeat inv_on_free_vars;
try rewrite → shiftnP_xpredT in *; eauto.
- cbn in ×. simpl.
induction X0; simpl; depelim predΓ'; [constructor|]; rewrite ?app_context_nil_l; simpl; eauto.
rewrite on_ctx_free_vars_xpredT_snoc ⇒ /= /andP[] ond onΓ.
constructor; auto.
eapply All_decls_on_free_vars_map_impl_inv; tea.
cbn. intros t t' ont IH. eauto.
-
simpl.
induction X3; simpl; depelim X2; constructor; simpl; intuition auto.
move: H. rewrite /= on_ctx_free_vars_xpredT_snoc ⇒ /andP[] ond onΓ; eauto.
move: H. rewrite /= on_ctx_free_vars_xpredT_snoc ⇒ /andP[] ond onΓ; eauto.
eapply All_decls_on_free_vars_map_impl_inv; tea; cbn; eauto.
intros t t' ont IH.
specialize (IH ond ont). eapply IH.
eapply on_contexts_app ⇒ //. eapply X ⇒ //.
- simpl. rename_all_hyps.
rewrite (rho_app_lambda _ _ _ _ _ []).
pose proof (pred1_pred1_ctx _ predt0).
eapply (substitution0_pred1); simpl in *; eauto; rtoProp; eauto with fvs.
eapply impl_impl_forall_Γ'; eauto with fvs.
constructor; eauto. constructor. eauto with fvs.
- simp rho.
pose proof (pred1_pred1_ctx _ predt0).
eapply (substitution0_let_pred1); simpl in *; eauto with fvs.
eapply pred1_on_free_vars; tea. eauto with fvs.
eapply impl_impl_forall_Γ'1; eauto with fvs.
constructor; eauto. constructor; eauto with fvs.
- simp rho.
destruct nth_error eqn:Heq. simpl in X0.
pose proof Heq. apply nth_error_Some_length in Heq.
destruct c as [na [?|] ?]; noconf heq_option_map.
simpl in X0.
assert (on_free_vars xpredT body).
eapply pred1_on_ctx_free_vars in H0; tea.
change xpredT with (addnP 0 xpredT) in H0.
eapply nth_error_on_free_vars_ctx in H0; tea.
now move/andP: H0.
eapply (f_equal (option_map decl_body)) in H.
eapply nth_error_pred1_ctx_l in H; eauto.
destruct H. intuition. rewrite a. simp rho.
rewrite -{1}(firstn_skipn (S i) Γ').
rewrite -{1}(firstn_skipn (S i) Γ'0).
pose proof (All2_fold_length predΓ'0).
assert (S i = #|firstn (S i) Γ'|).
rewrite !firstn_length_le; try lia.
assert (S i = #|firstn (S i) Γ'0|).
rewrite !firstn_length_le; try lia.
rewrite {5}H3 {6}H4.
eapply pred1_on_ctx_free_vars in predΓ'; tea.
eapply weakening_pred1_pred1; eauto with fvs.
eapply on_contexts_over_firstn_skipn. auto.
erewrite on_ctx_free_vars_xpredT_skipn ⇒ //.
noconf heq_option_map.
- simp rho. simpl in ×.
destruct option_map eqn:Heq.
destruct o. constructor; auto.
constructor. auto.
constructor. auto.
-
simpl in X0. cbn.
rewrite rho_app_case.
rewrite decompose_app_mkApps; auto.
change eq_inductive with (@eqb inductive _).
destruct (eqb_specT ci.(ci_ind) ci.(ci_ind)); try discriminate.
2:{ congruence. }
unfold iota_red. eapply forallb_All in p4. eapply All2_All_mix_left in X3; tea.
eapply All2_nth_error_Some_right in X3 as [br0 [hnth [hcl [IHbr [[predbod IHbod] breq]]]]]; tea.
move/andP: hcl ⇒ [] clbctx clbod.
rewrite hnth.
have fvbrctx : on_ctx_free_vars xpredT (Γ,,, inst_case_branch_context p0 br0).
{rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r /inst_case_branch_context.
rewrite on_ctx_free_vars_xpredT. eapply on_free_vars_ctx_inst_case_context; trea. }
intuition.
forward X3. now rewrite → shiftnP_xpredT in clbod.
pose proof (All2_length X1).
rewrite H. rewrite heq_length.
replace (ci_npar ci + context_assumptions (bcontext br) - ci_npar ci)
with (context_assumptions (bcontext br)) by lia.
rewrite breq eqb_refl.
rewrite !subst_inst.
assert (forallb (on_free_vars xpredT) args1).
{ solve_all; eauto with fvs. }
eapply rho_triangle_All_All2_ind_terms in X1. 3:exact predΓ'0. all:tea.
rewrite /rho_iota_red subst_inst.
eapply strong_substitutivity.
+ instantiate (2 := (Γ' ,,, smash_context [] (inst_case_branch_context (set_pparams p0 pparams1) br))).
instantiate (1 := (Γ'0 ,,, smash_context [] (inst_case_branch_context (rho_predicate Γ'0 p0) br0))).
eapply pred1_expand_lets; eauto with fvs.
rewrite /inst_case_branch_context in X3 *; cbn; eauto with fvs.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea.
solve_all. eauto with fvs. rewrite -(All2_length X2) -breq //.
eapply pred1_on_free_vars; tea.
eapply nth_error_all in hnth; tea. move/andP: hnth ⇒ [].
now rewrite shiftnP_xpredT.
eapply X3. eapply on_contexts_app ⇒ //.
assert (bredctx :
pred1_ctx_over Σ Γ' Γ'0 (inst_case_branch_context (set_pparams p0 pparams1) br)
(inst_case_branch_context (rho_predicate Γ'0 p0) br0)).
{ rewrite /inst_case_branch_context /=.
rewrite -breq.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in clbctx.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
exact bredctx.
now rewrite (All2_fold_length predΓ'0).
+ eapply on_free_vars_expand_lets_k. reflexivity.
eapply on_free_vars_ctx_inst_case_context; trea; cbn; solve_all; eauto with fvs.
rewrite -(All2_length X2) // -breq //. len.
rewrite -breq.
eapply pred1_on_free_vars; tea.
rewrite on_ctx_free_vars_app. len. rewrite addnP_shiftnP H1 andb_true_r.
relativize #|bcontext br0|; [erewrite on_free_vars_ctx_on_ctx_free_vars|].
eapply on_free_vars_ctx_inst_case_context; trea; cbn; solve_all; eauto with fvs.
now len.
+ rewrite -subst_inst.
eapply on_free_vars_subst. rewrite forallb_rev forallb_skipn //; tea.
eapply on_free_vars_expand_lets_k ⇒ //. len.
rewrite skipn_length; lia.
rewrite /inst_case_branch_context.
eapply on_free_vars_ctx_inst_case_context; trea; len; solve_all. eauto with fvs.
rewrite -breq -(All2_length X2) //.
eapply pred1_on_free_vars; tea. 2:len; rewrite -breq //.
len. rewrite shiftnP_xpredT //.
+ eapply pred1_subst_ext.
rewrite shiftnP_xpredT. intros i; reflexivity. intros i; reflexivity.
1-2:sigma; reflexivity.
eapply All2_skipn in X1.
eapply All2_rev in X1.
eapply pred1_subst_consn; tea. eauto with fvs.
rewrite forallb_rev forallb_skipn //. len. rewrite !List.skipn_length; lia.
len. rewrite breq List.skipn_length H heq_length. lia.
len. congruence.
-
unfold unfold_fix in heq_unfold_fix |- ×.
rewrite rho_app_fix.
destruct nth_error eqn:Heq; noconf heq_unfold_fix.
assert (on_free_vars xpredT (tFix mfix1 idx)).
{ eapply All2_All_mix_left in X3; tea.
cbn. eapply All_forallb. eapply All2_All_right; tea. cbn.
intuition auto. destruct a1.
move/andP: a0 ⇒ [] onty onb.
rewrite → shiftnP_xpredT in onb.
apply/andP; split; eauto with fvs.
rewrite shiftnP_xpredT.
eapply pred1_on_free_vars; tea.
rewrite on_ctx_free_vars_app H1 andb_true_r.
rewrite -(shiftnP_xpredT #|fix_context mfix0|).
rewrite on_free_vars_ctx_on_ctx_free_vars.
eapply on_free_vars_fix_context. solve_all. }
eapply All2_nth_error_Some_right in Heq; eauto.
destruct Heq as [t' [Hnth Hrel]].
destruct Hrel as [[Hty Hrhoty] [[Hreleq0 Hreleq1] Heq]].
rewrite Hnth. simpl.
destruct args0. depelim X4. unfold is_constructor in heq_is_constructor.
rewrite nth_error_nil in heq_is_constructor ⇒ //.
pose proof Hnth as hnth'.
eapply All2_nth_error_Some in hnth'; eauto.
destruct hnth' as [fn' [Hnth' [? ?]]].
destruct t', d.
noconf Heq. destruct o, p as [[ol ol'] or].
noconf or. cbn -[map].
move: heq_is_constructor. cbn -[map].
revert X4 b. cbn in × |-. generalize (t :: args0). simpl.
clear t args0. intros args0 Hargs onfvs isc.
simpl. rewrite isc.
eapply pred_mkApps.
rewrite !subst0_inst. eapply PCUICParallelReduction.simpl_pred; [sigma; trea|sigma; trea|].
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //; solve_all.
move/andP: (nth_error_all Hnth a) ⇒ /= [] ondtype ondbody.
specialize (X0 ondtype); specialize (X2 ondtype).
assert (onfvfix : on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_fix_context; solve_all. }
specialize (Hreleq1 onfvfix).
rewrite → shiftnP_xpredT in ondbody. specialize (Hreleq1 ondbody).
eapply strong_substitutivity; eauto with fvs.
× eapply Hreleq1. eapply on_contexts_app ⇒ //.
eapply impl_forall_Γ'0; eauto with fvs.
× rewrite -subst0_inst. eapply on_free_vars_subst.
eapply (on_free_vars_fix_subst _ _ idx). cbn. solve_all.
eapply pred1_on_free_vars; tea; now rewrite shiftnP_xpredT.
× rewrite -(rho_fix_subst xpredT). solve_all.
eapply All2_prop2_eq_split in X3.
eapply (pred_subst_rho_fix Γ _ _ _ _ idx); intuition auto. cbn. solve_all.
clear b0. solve_all. unfold on_Trel in ×. intuition auto.
clear b0; solve_all. eapply X4; eauto.
now move/andP: a0 ⇒ []. solve_all. unfold on_Trel in ×.
intuition eauto with fvs. apply X4.
move/andP: a0 ⇒ []. now rewrite shiftnP_xpredT.
eapply on_contexts_app ⇒ //. eapply X3; eauto.
× eapply forallb_All in onfvs. eapply All2_All_mix_left in Hargs; tea.
eapply All2_sym, All2_map_left, All2_impl; eauto. simpl.
intuition eauto.
-
rewrite rho_app_case.
rewrite decompose_app_mkApps; auto.
unfold unfold_cofix in heq_unfold_cofix |- ×.
destruct nth_error eqn:Heq; noconf heq_unfold_cofix. simpl.
eapply All2_prop2_eq_split in X3. intuition.
eapply All2_nth_error_Some_right in Heq; eauto.
destruct Heq as [t' [Ht' Hrel]]. rewrite Ht'. simpl.
unfold on_Trel in ×. destruct Hrel.
assert (oninst : on_ctx_free_vars xpredT (Γ,,, PCUICCases.inst_case_predicate_context p0)).
{ rewrite on_ctx_free_vars_app H2 andb_true_r.
rewrite on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea. }
forward impl_forall_Γ'1 by tas.
intuition auto.
assert (predctx :
pred1_ctx_over Σ Γ' Γ'0 (PCUICCases.inst_case_predicate_context p1)
(PCUICCases.inst_case_predicate_context (rho_predicate Γ'0 p0))).
{ rewrite /PCUICCases.inst_case_predicate_context /=.
rewrite -heq_puinst -heq_pcontext.
eapply rho_inst_case_context; tea.
rewrite test_context_k_closed_on_free_vars_ctx in p3.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
eapply pred_case; simpl; eauto.
× eapply All2_sym, All2_map_left. solve_all.
× apply X2, All2_fold_app ⇒ //.
× eapply All2_sym, All2_map_left.
eapply forallb_All in p5.
eapply All2_All_mix_left in X9; tea.
eapply (All2_impl X9). cbn; move⇒ x y [] /andP[] clbctx clbbody [].
assert (on_ctx_free_vars xpredT (Γ,,, inst_case_branch_context p0 x)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H2 andb_true_r.
rewrite /inst_case_branch_context.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea; solve_all. }
rewrite → shiftnP_xpredT in clbbody.
move/(_ H) ⇒ IHctx [] [] pbody /(_ H clbbody) IHbbody eqctx.
assert (bredctx :
pred1_ctx_over Σ Γ' Γ'0 (inst_case_branch_context p1 y)
(inst_case_branch_context (rho_predicate Γ'0 p0) x)).
{ rewrite /inst_case_branch_context /=.
rewrite -heq_puinst -eqctx.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in clbctx.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
repeat split ⇒ //.
eapply IHbbody.
eapply on_contexts_app ⇒ //.
× eapply pred_mkApps.
rewrite -(fold_fix_context_rho_ctx xpredT).
set (rhoΓ := rho_ctx Γ ,,, rho_ctx_over (rho_ctx Γ) (fix_context mfix0)) in × ⇒ //.
solve_all.
rewrite !subst_inst. eapply PCUICParallelReduction.simpl_pred; try now sigma.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H2 andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
now eapply on_free_vars_fix_context. }
assert (on_free_vars xpredT (dbody t')).
{eapply nth_error_all in a; tea.
move/andP: a ⇒ []. now rewrite shiftnP_xpredT. }
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix1| xpredT))) mfix1).
{ eapply All2_prod in a1; tea. solve_all; eauto with fvs. inv_on_free_vars.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
eapply strong_substitutivity; eauto; tea.
+ eapply p6; tea; eauto with fvs.
eapply on_contexts_app ⇒ //. eapply impl_forall_Γ'0; eauto with fvs.
+ eauto with fvs.
+ rewrite -subst0_inst. eapply on_free_vars_subst.
eapply (on_free_vars_cofix_subst _ _ idx); cbn; tea. len.
eapply pred1_on_free_vars; tea; rewrite shiftnP_xpredT //.
+ rewrite -(rho_cofix_subst xpredT) //. solve_all.
eapply (pred_subst_rho_cofix Γ _ _ _ _ idx); tea; auto. cbn; solve_all.
eapply All2_All_mix_left in a1; tea.
eapply (All2_impl a1); solve_all. inv_on_free_vars.
solve_all. unfold on_Trel in *; solve_all.
solve_all. unfold on_Trel in *; solve_all. inv_on_free_vars.
eapply X3; eauto with fvs.
eapply on_contexts_app ⇒ //.
eapply X0 ⇒ //.
+ eapply forallb_All in b. eapply All2_All_mix_left in X4; tea.
eapply All2_sym, All2_map_left, All2_impl; eauto. simpl. intuition eauto.
-
simpl. cbn in H1; inv_on_free_vars. cbn in a.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H0 andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
eapply on_free_vars_fix_context; solve_all. }
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix1| xpredT))) mfix1).
{ red in X3. solve_all; eauto with fvs. inv_on_free_vars. unfold on_Trel in ×. solve_all.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
destruct p as [[ind pars] arg].
rewrite rho_app_proj.
rewrite decompose_app_mkApps. auto.
unfold unfold_cofix in heq_unfold_cofix |- ×.
destruct nth_error eqn:Heq; noconf heq_unfold_cofix.
eapply All2_nth_error_Some_right in Heq; eauto.
destruct Heq as [t' [Hnth Hrel]]. destruct Hrel as [[Hty Hrhoty] [[Hreleq0 Hreleq1] Heq]].
assert (on_free_vars xpredT (dbody t')).
{ solve_all. eapply nth_error_all in a; tea.
move/andP: a ⇒ []. now rewrite shiftnP_xpredT. }
assert (on_free_vars xpredT (dtype t')).
{ solve_all. eapply nth_error_all in a; tea.
now move/andP: a ⇒ []. }
assert (on_free_vars xpredT (dbody d)).
{ eauto with fvs. }
unfold map_fix. rewrite Hnth /=.
econstructor. eapply pred_mkApps; eauto.
rewrite - (fold_fix_context_rho_ctx xpredT) //.
rewrite !subst0_inst. eapply strong_substitutivity; tea.
+ eapply Hreleq1; eauto with fvs.
eapply on_contexts_app ⇒ //.
eapply impl_forall_Γ'0; eauto with fvs.
+ rewrite -subst0_inst.
eapply on_free_vars_subst; eauto with fvs.
eapply (on_free_vars_cofix_subst _ _ idx); eauto with fvs.
rewrite shiftnP_xpredT //.
+ rewrite -(rho_cofix_subst xpredT) //.
red in X3. eapply (pred_subst_rho_cofix Γ _ _ _ _ idx) ⇒ //; solve_all; unfold on_Trel in *; eauto with fvs.
inv_on_free_vars. solve_all. inv_on_free_vars. solve_all.
eapply X6; eauto with fvs.
eapply on_contexts_app ⇒ //. solve_all.
+ eapply forallb_All in b;eapply All2_All_mix_left in X4; tea.
eapply All2_sym, All2_map_left; solve_all.
- simpl; simp rho; simpl.
simpl in X0. red in H. rewrite H /= heq_cst_body /=.
now eapply pred1_refl_gen.
- simpl in ×. simp rho; simpl.
destruct (lookup_env Σ c) eqn:Heq. 2:{ constructor; auto. }
destruct g. 2:{ constructor; auto. }
destruct c0. destruct cst_body0 eqn:Heq'. pcuic.
constructor; auto.
- simpl in ×. inv_on_free_vars. rewrite rho_app_proj.
rewrite decompose_app_mkApps; auto.
change eq_inductive with (@eqb inductive _).
case: eqb_specT ⇒ // ⇒ _.
eapply All2_nth_error_Some_right in heq_nth_error as [t' [? ?]]; eauto.
simpl in y. rewrite e. simpl.
auto. eapply y ⇒ //.
eapply nth_error_forallb in b; tea.
- simpl; simp rho. eapply pred_abs; auto.
eapply impl_impl_forall_Γ'0; eauto with fvs.
constructor; eauto with fvs. constructor; eauto with fvs.
-
Application
simp rho.
assert (onΓ' : on_ctx_free_vars xpredT Γ').
{ pose proof (pred1_pred1_ctx _ predM0). eauto with fvs. }
rename impl_impl_forall_Γ' into IHM1.
rename impl_impl_forall_Γ'0 into IHN1.
intuition auto. specialize (X1 _ predΓ'0).
specialize (X _ predΓ'0).
destruct view_lambda_fix_app. simp rho. simpl; simp rho.
+
inv_on_free_vars. cbn in a.
assert (onΓmfix : on_ctx_free_vars xpredT (Γ,,, fix_context mfix)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
destruct (rho_fix_elim Γ'0 mfix i l).
× rewrite /unfold_fix {1}/map_fix nth_error_map e /=.
eapply (is_constructor_app_ge (rarg d) _ _) in i0 ⇒ //.
rewrite → i0.
rewrite map_app !mkApps_app.
eapply (pred_mkApps _ _ _ _ _ [N1]) ⇒ //.
rewrite - (fold_fix_context_rho_ctx xpredT) //.
rewrite (rho_fix_subst xpredT) ⇒ //. subst fn.
rewrite (fold_fix_context_rho_ctx xpredT) //.
repeat constructor; auto.
× simp rho in X1.
simpl in X1. simp rho in X1.
destruct (rho_fix_elim Γ'0 mfix i (l ++ [a0])).
**
rewrite e in i0.
rewrite /unfold_fix nth_error_map e /= i1.
simpl.
destruct (pred1_mkApps_tFix_inv _ _ _ _ _ _ _ _ e i0 predM0) as
[mfix1 [args1 [[HM1 Hmfix] Hargs]]].
subst M1.
rewrite -[tApp _ _](mkApps_app _ _ [N1]).
red in Hmfix.
eapply All2_nth_error_Some in Hmfix; eauto.
destruct Hmfix as [d' [Hd' [eqd' [pred' eqsd']]]].
eapply (pred1_mkApps_tFix_refl_inv _ _ _ mfix1) in X1; eauto.
2:{ noconf eqsd'.
rewrite -H1.
pose proof (All2_length Hargs).
unfold is_constructor in i1.
move: i1 i0.
elim: nth_error_spec ⇒ //.
rewrite app_length; intros x hnth. simpl.
unfold is_constructor.
elim: nth_error_spec ⇒ // x' hnth' rargl rargsl.
destruct (eq_dec (rarg d) #|l|). lia.
rewrite nth_error_app_lt in hnth. lia. rewrite hnth in hnth'.
noconf hnth'. intros. rewrite i1 in i0 ⇒ //.
destruct (nth_error args1 (rarg d)) eqn:hnth'' ⇒ //.
eapply nth_error_Some_length in hnth''. lia. }
move: X1 ⇒ [redo redargs].
rewrite map_app.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix1| xpredT))) mfix1).
{ eapply pred1_mkApps_tFix_refl_inv in predM0 as []; tea.
red in a1. eapply forallb_All in a.
eapply All2_All_mix_left in a1; tea. solve_all.
inv_on_free_vars. unfold on_Trel in *; apply /andP; split; eauto with fvs.
rewrite shiftnP_xpredT //. eapply pred1_on_free_vars; tea.
destruct (is_constructor (rarg d) l) ⇒ //. }
eapply pred_fix; eauto with pcuic.
eapply pred1_rho_fix_context_2; eauto with pcuic fvs.
red in redo.
solve_all.
unfold on_Trel in ×. intuition auto. now noconf b0.
unfold unfold_fix. rewrite nth_error_map e /=.
rewrite map_fix_subst /= //.
intros n. simp rho; simpl; now simp rho.
move: i1.
eapply is_constructor_pred1.
eapply All2_app; eauto.
eapply All2_app ⇒ //. repeat constructor; auto.
**
simpl. rewrite map_app.
rewrite /unfold_fix nth_error_map.
destruct nth_error eqn:hnth ⇒ /=.
destruct (is_constructor (rarg d) (l ++ [a0])) ⇒ //.
rewrite mkApps_app.
apply (pred_mkApps _ _ _ _ _ [N1] _). auto.
repeat constructor; auto.
rewrite mkApps_app.
apply (pred_mkApps _ _ _ _ _ [N1] _). auto.
repeat constructor; auto.
+
rewrite rho_app_lambda' in X1. inv_on_free_vars.
destruct l. simpl in ×.
depelim predM0; solve_discr.
simp rho in X1.
depelim X1... econstructor; eauto.
simpl. simp rho.
rewrite map_app mkApps_app.
constructor; eauto.
+
simpl. constructor; auto.
- simpl; simp rho; simpl. eapply pred_zeta; eauto with fvs.
eapply impl_impl_forall_Γ'1; eauto with fvs.
do 2 (constructor; eauto with fvs).
-
rewrite rho_app_case.
have hpars : (All2 (pred1 Σ Γ' Γ'0) (pparams p1)
(map (rho Γ'0) (pparams p0))).
{ eapply All2_sym, All2_map_left; solve_all. }
have hbrs : All2
(fun br br' : branch term ⇒
on_Trel_eq (pred1 Σ (Γ',,, inst_case_branch_context p1 br)
(Γ'0,,, inst_case_branch_context (rho_predicate Γ'0 p0) br')) bbody bcontext br br') brs1
(map (rho_br Γ'0 (rho_predicate Γ'0 p0)) brs0).
{ eapply All2_sym, All2_map_left; solve_all.
assert (on_ctx_free_vars xpredT (Γ,,, inst_case_branch_context p0 x)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
rewrite /inst_case_branch_context.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea; solve_all. }
eapply b0 ⇒ //.
now rewrite → shiftnP_xpredT in H0.
assert (bredctx :
pred1_ctx_over Σ Γ' Γ'0 (inst_case_branch_context p1 y)
(inst_case_branch_context (rho_predicate Γ'0 p0) x)).
{ rewrite /inst_case_branch_context /=.
rewrite -heq_puinst -b.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in H.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. solve_all. }
eapply on_contexts_app ⇒ //. }
have pred_pred_ctx :
pred1_ctx_over Σ Γ' Γ'0 (PCUICCases.inst_case_predicate_context p1)
(PCUICCases.inst_case_predicate_context (rho_predicate Γ'0 p0)).
{ rewrite /PCUICCases.inst_case_predicate_context /=.
rewrite -heq_pcontext -heq_puinst.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in p3.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
assert (on_ctx_free_vars xpredT (Γ,,, inst_case_context (pparams p0) (puinst p0) (pcontext p0))).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea; solve_all. }
destruct (decompose_app c0) eqn:Heq. cbn -[eqb].
eapply on_contexts_over_app in pred_pred_ctx.
specialize (impl_impl_forall_Γ' H p2 _ pred_pred_ctx) as Hpret.
specialize (impl_forall_Γ'0 H _ predΓ'0) as Hpctx.
specialize (impl_impl_forall_Γ'0 H1 p4 _ predΓ'0) as Hc.
destruct (construct_cofix_discr t) eqn:Heq'.
destruct t; noconf Heq'.
+
apply decompose_app_inv in Heq.
subst c0. cbn -[eqb].
simp rho.
change eq_inductive with (@eqb inductive _).
destruct (eqb_specT ci.(ci_ind) ind). subst ind.
destruct (nth_error brs0 n) eqn:hbr ⇒ //.
case: eqb_specT ⇒ [eq|neq].
eapply pred1_mkApps_tConstruct in predc0 as [args' [? ?]]; pcuic. subst c1.
intuition auto.
rewrite rho_app_construct in Hc.
eapply pred1_mkApps_refl_tConstruct in Hc.
eapply PCUICParallelReduction.simpl_pred; revgoals. 3:reflexivity.
econstructor. 1-2:tea.
× erewrite nth_error_map, hbr. instantiate (1 := rho_br Γ'0 (rho_predicate Γ'0 p0) b).
reflexivity.
× len.
× solve_all.
× solve_all. eapply All2_map_right_inv in hbrs. solve_all.
eapply on_contexts_app_inv ⇒ //. rewrite -heq_puinst.
now eapply pred1_pred1_ctx in a0. apply (All2_fold_length predΓ'0).
now rewrite -heq_puinst b0.
× rewrite /rho_iota_red /iota_red /= /set_pparams /= /inst_case_branch_context /=.
rewrite heq_puinst. reflexivity.
× econstructor; eauto. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0). solve_all.
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
simp rho in Hc.
× econstructor; eauto. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
simp rho in Hc.
× econstructor; eauto. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
eapply All2_map_right_inv in hbrs. solve_all.
solve_all.
eapply pred1_pred1_ctx in a. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
simp rho in Hc.
+
apply decompose_app_inv in Heq.
subst c0. simpl. simp rho.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix| xpredT))) mfix).
{ now inv_on_free_vars. }
assert (onΓmfix: on_ctx_free_vars xpredT (Γ,,, fix_context mfix)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
simpl.
simp rho in Hc.
eapply pred1_mkApps_tCoFix_inv in predc0 as [mfix' [idx' [[? ?] ?]]].
subst c1.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix'| xpredT))) mfix').
{ eapply forallb_All in H0. eapply All2_All_mix_left in a; tea. solve_all. inv_on_free_vars.
inv_on_free_vars. inv_on_free_vars.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
simpl in Hc. eapply pred1_mkApps_tCoFix_refl_inv in Hc.
intuition.
eapply All2_prop2_eq_split in a1. intuition.
unfold unfold_cofix.
assert (All2 (on_Trel eq dname) mfix'
(map_fix rho Γ'0 (fold_fix_context rho Γ'0 [] mfix) mfix)).
{ eapply All2_impl; [eapply b0|]; pcuic. }
pose proof (All2_mix a1 X0).
eapply pred1_rho_fix_context_2 in X7; eauto with fvs.
rewrite - (fold_fix_context_rho_ctx xpredT) // in X7.
rewrite (fix_context_map_fix xpredT) // in X7.
eapply rho_All_All2_fold_inv in X7; pcuic.
rewrite /rho_fix_context - (fold_fix_context_rho_ctx xpredT) // in a1.
eapply on_contexts_app_inv in pred_pred_ctx as []. 2:eapply (All2_fold_length predΓ'0).
destruct nth_error eqn:Heq. simpl.
×
pose proof Heq.
eapply All2_nth_error_Some in Heq; eauto. destruct Heq; intuition auto.
eapply pred_cofix_case with
(map_fix rho Γ'0 (rho_ctx_over Γ'0 (fix_context mfix)) mfix) (rarg d); pcuic.
-- rewrite (fix_context_map_fix xpredT) //.
eapply All2_fold_fold_context_right.
eapply All2_fold_impl; tea. solve_all.
eapply All_decls_map_right.
eapply All_decls_impl; tea. solve_all.
-- eapply All2_mix; pcuic.
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in b1.
eapply All2_mix. eauto.
now rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) in b0.
-- unfold unfold_cofix.
rewrite nth_error_map.
rewrite H3. simpl. f_equal. f_equal.
unfold map_fix.
rewrite (fold_fix_context_rho_ctx xpredT) //.
rewrite (map_cofix_subst _ (fun Γ Γ' ⇒ rho (Γ ,,, Γ'))) //.
intros. simp rho; simpl; simp rho. reflexivity.
-- eapply All2_mix; pcuic.
eapply All2_prod_inv in hbrs as [].
eapply (All2_impl a7); solve_all.
eapply on_contexts_app_inv ⇒ //.
now eapply pred1_pred1_ctx in X8.
apply (All2_fold_length predΓ'0).
× eapply pred_case; simpl; eauto; solve_all.
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a4. eapply on_contexts_app_inv in a4 as [] ⇒ //.
now apply (All2_fold_length predΓ'0).
eapply pred_mkApps. constructor. pcuic.
--- rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //. solve_all.
rewrite (fix_context_map_fix xpredT) //. solve_all.
eapply All2_fold_fold_context_right.
eapply All2_fold_impl; tea. solve_all.
eapply All_decls_map_right.
eapply All_decls_impl; tea. solve_all.
--- eapply All2_mix; pcuic.
eapply All2_prod_inv in a1 as [].
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //. solve_all.
eapply All2_mix; pcuic.
--- pcuic.
+ apply decompose_app_inv in Heq. subst c0.
rewrite construct_cofix_discr_match //.
econstructor; cbn; tea; auto.
eapply on_contexts_app_inv ⇒ //. eapply (All2_fold_length predΓ'0).
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a.
eapply on_contexts_app_inv ⇒ //. apply (All2_fold_length predΓ'0).
+ tas.
-
simpl.
destruct p as [ind pars arg].
rewrite rho_app_proj.
specialize (impl_impl_forall_Γ' H H0 _ predΓ'0).
rename impl_impl_forall_Γ' into Hc.
assert (onΓ' : on_ctx_free_vars xpredT Γ').
{ eapply pred1_pred1_ctx in predc; eauto with fvs. }
destruct decompose_app eqn:Heq.
destruct (view_construct0_cofix t).
+ apply decompose_app_inv in Heq.
subst c. simpl.
simp rho in Hc |- ×.
pose proof (pred1_pred1_ctx _ Hc).
eapply pred1_mkApps_tConstruct in predc as [args' [? ?]]; subst.
eapply pred1_mkApps_refl_tConstruct in Hc.
destruct nth_error eqn:Heq.
change eq_inductive with (@eqb inductive _).
destruct (eqb_specT ind ind0); subst.
econstructor; eauto.
now rewrite nth_error_map Heq.
eapply pred_proj_congr, pred_mkApps; auto with pcuic.
destruct eq_inductive. constructor; auto.
eapply pred_mkApps; auto.
econstructor; eauto.
constructor; auto.
eapply pred_mkApps; auto.
econstructor; eauto.
+ apply decompose_app_inv in Heq.
subst c. simpl.
simp rho in Hc |- ×.
eapply pred1_mkApps_tCoFix_inv in predc as [mfix' [idx' [[? ?] ?]]].
subst c'. simpl in a. pose proof Hc.
eapply pred1_mkApps_tCoFix_refl_inv in X.
destruct X.
unfold unfold_cofix.
eapply All2_prop2_eq_split in a1. intuition auto.
assert (All2 (on_Trel eq dname) mfix'
(map_fix rho Γ'0 (fold_fix_context rho Γ'0 [] mfix) mfix)).
{ eapply All2_impl; [eapply b|]; pcuic. }
cbn in H0; inv_on_free_vars; cbn in a3.
assert (onΓmfix: on_ctx_free_vars xpredT (Γ,,, fix_context mfix)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
simpl.
simp rho in Hc.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix'| xpredT))) mfix').
{ eapply forallb_All in a3.
eapply All2_All_mix_left in a; tea. solve_all. unfold on_Trel in *; inv_on_free_vars.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
pose proof (All2_mix a1 X) as X2.
eapply pred1_rho_fix_context_2 in X2; pcuic; tea.
rewrite -(fold_fix_context_rho_ctx xpredT) // in X2.
rewrite (fix_context_map_fix xpredT) // in X2.
eapply rho_All_All2_fold_inv in X2; pcuic.
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in a1.
intuition auto.
destruct nth_error eqn:Heq. simpl.
×
pose proof Heq.
eapply All2_nth_error_Some in Heq; eauto. destruct Heq; intuition auto.
eapply pred_cofix_proj with (map_fix rho Γ'0 (rho_ctx_over Γ'0 (fix_context mfix)) mfix) (rarg d); pcuic.
-- rewrite (fix_context_map_fix xpredT) //.
eapply All2_fold_fold_context_right.
eapply All2_fold_impl; tea. solve_all.
eapply All_decls_map_right.
eapply All_decls_impl; tea. solve_all.
-- eapply All2_mix; pcuic.
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in b0.
eapply All2_mix. eauto.
now rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in b.
-- unfold unfold_cofix.
rewrite nth_error_map.
rewrite H1. simpl. f_equal. f_equal.
unfold map_fix.
rewrite (fold_fix_context_rho_ctx xpredT) //.
rewrite (map_cofix_subst _ (fun Γ Γ' ⇒ rho (Γ ,,, Γ'))) //.
intros. simp rho; simpl; simp rho. reflexivity.
× eapply pred_proj_congr; eauto.
+ eapply decompose_app_inv in Heq. subst c.
destruct t; noconf d; try solve [econstructor; eauto].
destruct n; [easy|].
econstructor; eauto.
- simp rho; simpl; simp rho.
cbn in X0. intuition auto.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
intuition auto. specialize (X0 _ predΓ'0).
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //; solve_all.
constructor; eauto.
{ rewrite (fix_context_map_fix xpredT) //; solve_all. }
red. red in X3.
eapply All2_sym, All2_map_left.
eapply All2_All_mix_left in X3; tea; eapply All2_impl; tea. unfold on_Trel.
intros; cbn; intuition auto; inv_on_free_vars; eauto with fvs.
rewrite (fix_context_map_fix xpredT) //; solve_all.
eapply X2.
eapply on_contexts_app ⇒ //.
- simp rho; simpl; simp rho.
cbn in X0. intuition auto.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
intuition auto. specialize (X0 _ predΓ'0).
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //; solve_all.
constructor; eauto.
{ rewrite (fix_context_map_fix xpredT) //; solve_all. }
red. red in X3.
eapply All2_sym, All2_map_left.
eapply All2_All_mix_left in X3; tea; eapply All2_impl; tea. unfold on_Trel.
intros; cbn; intuition auto; inv_on_free_vars; eauto with fvs.
rewrite (fix_context_map_fix xpredT) //; solve_all.
eapply X2.
eapply on_contexts_app ⇒ //.
- simp rho; simpl; econstructor; eauto with fvs.
intuition auto. eapply impl_impl_forall_Γ'0; tea; eauto with fvs.
do 2 (constructor; eauto with fvs).
- simpl in ×. simp rho. constructor. eauto.
eapply All2_All_mix_left in X1; tea.
eapply All2_sym, All2_map_left, All2_impl; tea ⇒ /=; intuition auto.
- destruct t; noconf H; simpl; constructor; eauto.
Qed.
Corollary triangle {Γ Δ t u} :
on_ctx_free_vars xpredT Γ →
on_free_vars xpredT t →
pred1 Σ Γ Δ t u →
pred1 Σ Δ (rho_ctx Γ) u (rho (rho_ctx Γ) t).
Proof using wfΣ.
intros. eapply triangle_gen; tea.
eapply pred1_pred1_ctx in X.
induction X; simpl. constructor.
move: H; rewrite on_ctx_free_vars_xpredT_snoc ⇒ /= /andP[] ond onΓ.
constructor; auto.
eapply All_decls_on_free_vars_map_impl_inv; tea.
cbn. intros ? ? ont IH. eapply triangle_gen; eauto.
Qed.
End Rho.
Notation rho_ctx Σ := (fold_context_term (rho Σ)).
Corollary pred1_diamond {cf : checker_flags} {Σ : global_env} {wfΣ : wf Σ} {Γ Δ Δ' t u v} :
on_ctx_free_vars xpredT Γ →
on_free_vars xpredT t →
pred1 Σ Γ Δ t u →
pred1 Σ Γ Δ' t v →
pred1 Σ Δ (rho_ctx Σ Γ) u (rho Σ (rho_ctx Σ Γ) t) ×
pred1 Σ Δ' (rho_ctx Σ Γ) v (rho Σ (rho_ctx Σ Γ) t).
Proof using.
intros.
split; eapply triangle; auto.
Qed.
assert (onΓ' : on_ctx_free_vars xpredT Γ').
{ pose proof (pred1_pred1_ctx _ predM0). eauto with fvs. }
rename impl_impl_forall_Γ' into IHM1.
rename impl_impl_forall_Γ'0 into IHN1.
intuition auto. specialize (X1 _ predΓ'0).
specialize (X _ predΓ'0).
destruct view_lambda_fix_app. simp rho. simpl; simp rho.
+
inv_on_free_vars. cbn in a.
assert (onΓmfix : on_ctx_free_vars xpredT (Γ,,, fix_context mfix)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
destruct (rho_fix_elim Γ'0 mfix i l).
× rewrite /unfold_fix {1}/map_fix nth_error_map e /=.
eapply (is_constructor_app_ge (rarg d) _ _) in i0 ⇒ //.
rewrite → i0.
rewrite map_app !mkApps_app.
eapply (pred_mkApps _ _ _ _ _ [N1]) ⇒ //.
rewrite - (fold_fix_context_rho_ctx xpredT) //.
rewrite (rho_fix_subst xpredT) ⇒ //. subst fn.
rewrite (fold_fix_context_rho_ctx xpredT) //.
repeat constructor; auto.
× simp rho in X1.
simpl in X1. simp rho in X1.
destruct (rho_fix_elim Γ'0 mfix i (l ++ [a0])).
**
rewrite e in i0.
rewrite /unfold_fix nth_error_map e /= i1.
simpl.
destruct (pred1_mkApps_tFix_inv _ _ _ _ _ _ _ _ e i0 predM0) as
[mfix1 [args1 [[HM1 Hmfix] Hargs]]].
subst M1.
rewrite -[tApp _ _](mkApps_app _ _ [N1]).
red in Hmfix.
eapply All2_nth_error_Some in Hmfix; eauto.
destruct Hmfix as [d' [Hd' [eqd' [pred' eqsd']]]].
eapply (pred1_mkApps_tFix_refl_inv _ _ _ mfix1) in X1; eauto.
2:{ noconf eqsd'.
rewrite -H1.
pose proof (All2_length Hargs).
unfold is_constructor in i1.
move: i1 i0.
elim: nth_error_spec ⇒ //.
rewrite app_length; intros x hnth. simpl.
unfold is_constructor.
elim: nth_error_spec ⇒ // x' hnth' rargl rargsl.
destruct (eq_dec (rarg d) #|l|). lia.
rewrite nth_error_app_lt in hnth. lia. rewrite hnth in hnth'.
noconf hnth'. intros. rewrite i1 in i0 ⇒ //.
destruct (nth_error args1 (rarg d)) eqn:hnth'' ⇒ //.
eapply nth_error_Some_length in hnth''. lia. }
move: X1 ⇒ [redo redargs].
rewrite map_app.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix1| xpredT))) mfix1).
{ eapply pred1_mkApps_tFix_refl_inv in predM0 as []; tea.
red in a1. eapply forallb_All in a.
eapply All2_All_mix_left in a1; tea. solve_all.
inv_on_free_vars. unfold on_Trel in *; apply /andP; split; eauto with fvs.
rewrite shiftnP_xpredT //. eapply pred1_on_free_vars; tea.
destruct (is_constructor (rarg d) l) ⇒ //. }
eapply pred_fix; eauto with pcuic.
eapply pred1_rho_fix_context_2; eauto with pcuic fvs.
red in redo.
solve_all.
unfold on_Trel in ×. intuition auto. now noconf b0.
unfold unfold_fix. rewrite nth_error_map e /=.
rewrite map_fix_subst /= //.
intros n. simp rho; simpl; now simp rho.
move: i1.
eapply is_constructor_pred1.
eapply All2_app; eauto.
eapply All2_app ⇒ //. repeat constructor; auto.
**
simpl. rewrite map_app.
rewrite /unfold_fix nth_error_map.
destruct nth_error eqn:hnth ⇒ /=.
destruct (is_constructor (rarg d) (l ++ [a0])) ⇒ //.
rewrite mkApps_app.
apply (pred_mkApps _ _ _ _ _ [N1] _). auto.
repeat constructor; auto.
rewrite mkApps_app.
apply (pred_mkApps _ _ _ _ _ [N1] _). auto.
repeat constructor; auto.
+
rewrite rho_app_lambda' in X1. inv_on_free_vars.
destruct l. simpl in ×.
depelim predM0; solve_discr.
simp rho in X1.
depelim X1... econstructor; eauto.
simpl. simp rho.
rewrite map_app mkApps_app.
constructor; eauto.
+
simpl. constructor; auto.
- simpl; simp rho; simpl. eapply pred_zeta; eauto with fvs.
eapply impl_impl_forall_Γ'1; eauto with fvs.
do 2 (constructor; eauto with fvs).
-
rewrite rho_app_case.
have hpars : (All2 (pred1 Σ Γ' Γ'0) (pparams p1)
(map (rho Γ'0) (pparams p0))).
{ eapply All2_sym, All2_map_left; solve_all. }
have hbrs : All2
(fun br br' : branch term ⇒
on_Trel_eq (pred1 Σ (Γ',,, inst_case_branch_context p1 br)
(Γ'0,,, inst_case_branch_context (rho_predicate Γ'0 p0) br')) bbody bcontext br br') brs1
(map (rho_br Γ'0 (rho_predicate Γ'0 p0)) brs0).
{ eapply All2_sym, All2_map_left; solve_all.
assert (on_ctx_free_vars xpredT (Γ,,, inst_case_branch_context p0 x)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
rewrite /inst_case_branch_context.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea; solve_all. }
eapply b0 ⇒ //.
now rewrite → shiftnP_xpredT in H0.
assert (bredctx :
pred1_ctx_over Σ Γ' Γ'0 (inst_case_branch_context p1 y)
(inst_case_branch_context (rho_predicate Γ'0 p0) x)).
{ rewrite /inst_case_branch_context /=.
rewrite -heq_puinst -b.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in H.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. solve_all. }
eapply on_contexts_app ⇒ //. }
have pred_pred_ctx :
pred1_ctx_over Σ Γ' Γ'0 (PCUICCases.inst_case_predicate_context p1)
(PCUICCases.inst_case_predicate_context (rho_predicate Γ'0 p0)).
{ rewrite /PCUICCases.inst_case_predicate_context /=.
rewrite -heq_pcontext -heq_puinst.
eapply rho_inst_case_context; tea. solve_all.
rewrite test_context_k_closed_on_free_vars_ctx in p3.
eapply on_free_vars_ctx_impl; tea; eauto. intros i.
rewrite /shiftnP /closedP. destruct Nat.ltb ⇒ //. }
assert (on_ctx_free_vars xpredT (Γ,,, inst_case_context (pparams p0) (puinst p0) (pcontext p0))).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
eapply on_free_vars_ctx_on_ctx_free_vars_xpredT.
eapply on_free_vars_ctx_inst_case_context; trea; solve_all. }
destruct (decompose_app c0) eqn:Heq. cbn -[eqb].
eapply on_contexts_over_app in pred_pred_ctx.
specialize (impl_impl_forall_Γ' H p2 _ pred_pred_ctx) as Hpret.
specialize (impl_forall_Γ'0 H _ predΓ'0) as Hpctx.
specialize (impl_impl_forall_Γ'0 H1 p4 _ predΓ'0) as Hc.
destruct (construct_cofix_discr t) eqn:Heq'.
destruct t; noconf Heq'.
+
apply decompose_app_inv in Heq.
subst c0. cbn -[eqb].
simp rho.
change eq_inductive with (@eqb inductive _).
destruct (eqb_specT ci.(ci_ind) ind). subst ind.
destruct (nth_error brs0 n) eqn:hbr ⇒ //.
case: eqb_specT ⇒ [eq|neq].
eapply pred1_mkApps_tConstruct in predc0 as [args' [? ?]]; pcuic. subst c1.
intuition auto.
rewrite rho_app_construct in Hc.
eapply pred1_mkApps_refl_tConstruct in Hc.
eapply PCUICParallelReduction.simpl_pred; revgoals. 3:reflexivity.
econstructor. 1-2:tea.
× erewrite nth_error_map, hbr. instantiate (1 := rho_br Γ'0 (rho_predicate Γ'0 p0) b).
reflexivity.
× len.
× solve_all.
× solve_all. eapply All2_map_right_inv in hbrs. solve_all.
eapply on_contexts_app_inv ⇒ //. rewrite -heq_puinst.
now eapply pred1_pred1_ctx in a0. apply (All2_fold_length predΓ'0).
now rewrite -heq_puinst b0.
× rewrite /rho_iota_red /iota_red /= /set_pparams /= /inst_case_branch_context /=.
rewrite heq_puinst. reflexivity.
× econstructor; eauto. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0). solve_all.
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
simp rho in Hc.
× econstructor; eauto. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
simp rho in Hc.
× econstructor; eauto. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
eapply All2_map_right_inv in hbrs. solve_all.
solve_all.
eapply pred1_pred1_ctx in a. eapply on_contexts_app_inv ⇒ //.
apply (All2_fold_length predΓ'0).
simp rho in Hc.
+
apply decompose_app_inv in Heq.
subst c0. simpl. simp rho.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix| xpredT))) mfix).
{ now inv_on_free_vars. }
assert (onΓmfix: on_ctx_free_vars xpredT (Γ,,, fix_context mfix)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H1 andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
simpl.
simp rho in Hc.
eapply pred1_mkApps_tCoFix_inv in predc0 as [mfix' [idx' [[? ?] ?]]].
subst c1.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix'| xpredT))) mfix').
{ eapply forallb_All in H0. eapply All2_All_mix_left in a; tea. solve_all. inv_on_free_vars.
inv_on_free_vars. inv_on_free_vars.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
simpl in Hc. eapply pred1_mkApps_tCoFix_refl_inv in Hc.
intuition.
eapply All2_prop2_eq_split in a1. intuition.
unfold unfold_cofix.
assert (All2 (on_Trel eq dname) mfix'
(map_fix rho Γ'0 (fold_fix_context rho Γ'0 [] mfix) mfix)).
{ eapply All2_impl; [eapply b0|]; pcuic. }
pose proof (All2_mix a1 X0).
eapply pred1_rho_fix_context_2 in X7; eauto with fvs.
rewrite - (fold_fix_context_rho_ctx xpredT) // in X7.
rewrite (fix_context_map_fix xpredT) // in X7.
eapply rho_All_All2_fold_inv in X7; pcuic.
rewrite /rho_fix_context - (fold_fix_context_rho_ctx xpredT) // in a1.
eapply on_contexts_app_inv in pred_pred_ctx as []. 2:eapply (All2_fold_length predΓ'0).
destruct nth_error eqn:Heq. simpl.
×
pose proof Heq.
eapply All2_nth_error_Some in Heq; eauto. destruct Heq; intuition auto.
eapply pred_cofix_case with
(map_fix rho Γ'0 (rho_ctx_over Γ'0 (fix_context mfix)) mfix) (rarg d); pcuic.
-- rewrite (fix_context_map_fix xpredT) //.
eapply All2_fold_fold_context_right.
eapply All2_fold_impl; tea. solve_all.
eapply All_decls_map_right.
eapply All_decls_impl; tea. solve_all.
-- eapply All2_mix; pcuic.
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in b1.
eapply All2_mix. eauto.
now rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) in b0.
-- unfold unfold_cofix.
rewrite nth_error_map.
rewrite H3. simpl. f_equal. f_equal.
unfold map_fix.
rewrite (fold_fix_context_rho_ctx xpredT) //.
rewrite (map_cofix_subst _ (fun Γ Γ' ⇒ rho (Γ ,,, Γ'))) //.
intros. simp rho; simpl; simp rho. reflexivity.
-- eapply All2_mix; pcuic.
eapply All2_prod_inv in hbrs as [].
eapply (All2_impl a7); solve_all.
eapply on_contexts_app_inv ⇒ //.
now eapply pred1_pred1_ctx in X8.
apply (All2_fold_length predΓ'0).
× eapply pred_case; simpl; eauto; solve_all.
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a4. eapply on_contexts_app_inv in a4 as [] ⇒ //.
now apply (All2_fold_length predΓ'0).
eapply pred_mkApps. constructor. pcuic.
--- rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //. solve_all.
rewrite (fix_context_map_fix xpredT) //. solve_all.
eapply All2_fold_fold_context_right.
eapply All2_fold_impl; tea. solve_all.
eapply All_decls_map_right.
eapply All_decls_impl; tea. solve_all.
--- eapply All2_mix; pcuic.
eapply All2_prod_inv in a1 as [].
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //. solve_all.
eapply All2_mix; pcuic.
--- pcuic.
+ apply decompose_app_inv in Heq. subst c0.
rewrite construct_cofix_discr_match //.
econstructor; cbn; tea; auto.
eapply on_contexts_app_inv ⇒ //. eapply (All2_fold_length predΓ'0).
eapply All2_map_right_inv in hbrs. solve_all.
eapply pred1_pred1_ctx in a.
eapply on_contexts_app_inv ⇒ //. apply (All2_fold_length predΓ'0).
+ tas.
-
simpl.
destruct p as [ind pars arg].
rewrite rho_app_proj.
specialize (impl_impl_forall_Γ' H H0 _ predΓ'0).
rename impl_impl_forall_Γ' into Hc.
assert (onΓ' : on_ctx_free_vars xpredT Γ').
{ eapply pred1_pred1_ctx in predc; eauto with fvs. }
destruct decompose_app eqn:Heq.
destruct (view_construct0_cofix t).
+ apply decompose_app_inv in Heq.
subst c. simpl.
simp rho in Hc |- ×.
pose proof (pred1_pred1_ctx _ Hc).
eapply pred1_mkApps_tConstruct in predc as [args' [? ?]]; subst.
eapply pred1_mkApps_refl_tConstruct in Hc.
destruct nth_error eqn:Heq.
change eq_inductive with (@eqb inductive _).
destruct (eqb_specT ind ind0); subst.
econstructor; eauto.
now rewrite nth_error_map Heq.
eapply pred_proj_congr, pred_mkApps; auto with pcuic.
destruct eq_inductive. constructor; auto.
eapply pred_mkApps; auto.
econstructor; eauto.
constructor; auto.
eapply pred_mkApps; auto.
econstructor; eauto.
+ apply decompose_app_inv in Heq.
subst c. simpl.
simp rho in Hc |- ×.
eapply pred1_mkApps_tCoFix_inv in predc as [mfix' [idx' [[? ?] ?]]].
subst c'. simpl in a. pose proof Hc.
eapply pred1_mkApps_tCoFix_refl_inv in X.
destruct X.
unfold unfold_cofix.
eapply All2_prop2_eq_split in a1. intuition auto.
assert (All2 (on_Trel eq dname) mfix'
(map_fix rho Γ'0 (fold_fix_context rho Γ'0 [] mfix) mfix)).
{ eapply All2_impl; [eapply b|]; pcuic. }
cbn in H0; inv_on_free_vars; cbn in a3.
assert (onΓmfix: on_ctx_free_vars xpredT (Γ,,, fix_context mfix)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
simpl.
simp rho in Hc.
assert (forallb (test_def (on_free_vars xpredT) (on_free_vars (shiftnP #|mfix'| xpredT))) mfix').
{ eapply forallb_All in a3.
eapply All2_All_mix_left in a; tea. solve_all. unfold on_Trel in *; inv_on_free_vars.
apply/andP; split; eauto with fvs. rewrite shiftnP_xpredT; eauto with fvs. }
pose proof (All2_mix a1 X) as X2.
eapply pred1_rho_fix_context_2 in X2; pcuic; tea.
rewrite -(fold_fix_context_rho_ctx xpredT) // in X2.
rewrite (fix_context_map_fix xpredT) // in X2.
eapply rho_All_All2_fold_inv in X2; pcuic.
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in a1.
intuition auto.
destruct nth_error eqn:Heq. simpl.
×
pose proof Heq.
eapply All2_nth_error_Some in Heq; eauto. destruct Heq; intuition auto.
eapply pred_cofix_proj with (map_fix rho Γ'0 (rho_ctx_over Γ'0 (fix_context mfix)) mfix) (rarg d); pcuic.
-- rewrite (fix_context_map_fix xpredT) //.
eapply All2_fold_fold_context_right.
eapply All2_fold_impl; tea. solve_all.
eapply All_decls_map_right.
eapply All_decls_impl; tea. solve_all.
-- eapply All2_mix; pcuic.
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in b0.
eapply All2_mix. eauto.
now rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) // in b.
-- unfold unfold_cofix.
rewrite nth_error_map.
rewrite H1. simpl. f_equal. f_equal.
unfold map_fix.
rewrite (fold_fix_context_rho_ctx xpredT) //.
rewrite (map_cofix_subst _ (fun Γ Γ' ⇒ rho (Γ ,,, Γ'))) //.
intros. simp rho; simpl; simp rho. reflexivity.
× eapply pred_proj_congr; eauto.
+ eapply decompose_app_inv in Heq. subst c.
destruct t; noconf d; try solve [econstructor; eauto].
destruct n; [easy|].
econstructor; eauto.
- simp rho; simpl; simp rho.
cbn in X0. intuition auto.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
intuition auto. specialize (X0 _ predΓ'0).
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //; solve_all.
constructor; eauto.
{ rewrite (fix_context_map_fix xpredT) //; solve_all. }
red. red in X3.
eapply All2_sym, All2_map_left.
eapply All2_All_mix_left in X3; tea; eapply All2_impl; tea. unfold on_Trel.
intros; cbn; intuition auto; inv_on_free_vars; eauto with fvs.
rewrite (fix_context_map_fix xpredT) //; solve_all.
eapply X2.
eapply on_contexts_app ⇒ //.
- simp rho; simpl; simp rho.
cbn in X0. intuition auto.
assert (on_ctx_free_vars xpredT (Γ,,, fix_context mfix0)).
{ rewrite on_ctx_free_vars_app addnP_xpredT H andb_true_r.
erewrite on_free_vars_ctx_on_ctx_free_vars_xpredT ⇒ //.
apply on_free_vars_fix_context. solve_all. }
intuition auto. specialize (X0 _ predΓ'0).
rewrite /rho_fix_context -(fold_fix_context_rho_ctx xpredT) //; solve_all.
constructor; eauto.
{ rewrite (fix_context_map_fix xpredT) //; solve_all. }
red. red in X3.
eapply All2_sym, All2_map_left.
eapply All2_All_mix_left in X3; tea; eapply All2_impl; tea. unfold on_Trel.
intros; cbn; intuition auto; inv_on_free_vars; eauto with fvs.
rewrite (fix_context_map_fix xpredT) //; solve_all.
eapply X2.
eapply on_contexts_app ⇒ //.
- simp rho; simpl; econstructor; eauto with fvs.
intuition auto. eapply impl_impl_forall_Γ'0; tea; eauto with fvs.
do 2 (constructor; eauto with fvs).
- simpl in ×. simp rho. constructor. eauto.
eapply All2_All_mix_left in X1; tea.
eapply All2_sym, All2_map_left, All2_impl; tea ⇒ /=; intuition auto.
- destruct t; noconf H; simpl; constructor; eauto.
Qed.
Corollary triangle {Γ Δ t u} :
on_ctx_free_vars xpredT Γ →
on_free_vars xpredT t →
pred1 Σ Γ Δ t u →
pred1 Σ Δ (rho_ctx Γ) u (rho (rho_ctx Γ) t).
Proof using wfΣ.
intros. eapply triangle_gen; tea.
eapply pred1_pred1_ctx in X.
induction X; simpl. constructor.
move: H; rewrite on_ctx_free_vars_xpredT_snoc ⇒ /= /andP[] ond onΓ.
constructor; auto.
eapply All_decls_on_free_vars_map_impl_inv; tea.
cbn. intros ? ? ont IH. eapply triangle_gen; eauto.
Qed.
End Rho.
Notation rho_ctx Σ := (fold_context_term (rho Σ)).
Corollary pred1_diamond {cf : checker_flags} {Σ : global_env} {wfΣ : wf Σ} {Γ Δ Δ' t u v} :
on_ctx_free_vars xpredT Γ →
on_free_vars xpredT t →
pred1 Σ Γ Δ t u →
pred1 Σ Γ Δ' t v →
pred1 Σ Δ (rho_ctx Σ Γ) u (rho Σ (rho_ctx Σ Γ) t) ×
pred1 Σ Δ' (rho_ctx Σ Γ) v (rho Σ (rho_ctx Σ Γ) t).
Proof using.
intros.
split; eapply triangle; auto.
Qed.