Library MetaCoq.PCUIC.PCUICCumulProp

From Coq Require Import ssreflect ssrbool.
From MetaCoq.Template Require Import config utils Universes.
From MetaCoq.PCUIC Require Import PCUICTyping PCUICAst PCUICAstUtils PCUICTactics
     PCUICLiftSubst PCUICInductives PCUICGeneration PCUICSpine
     PCUICGlobalEnv PCUICWeakeningEnvConv PCUICWeakeningEnvTyp
     PCUICSubstitution PCUICUnivSubst PCUICUnivSubstitutionConv
     PCUICUnivSubstitutionTyp PCUICClosedTyp
     PCUICConversion PCUICCumulativity PCUICConfluence PCUICContexts
     PCUICSR PCUICInversion PCUICValidity PCUICSafeLemmata PCUICContextConversion
     PCUICContextConversionTyp PCUICEquality PCUICReduction PCUICOnFreeVars
     PCUICWellScopedCumulativity
     PCUICInductiveInversion.

Require Import Equations.Type.Relation Equations.Type.Relation_Properties.
Require Equations.Prop.DepElim.
From Equations Require Import Equations.
Require Import ssreflect.

Implicit Types (Σ : global_env_ext).

Section no_prop_leq_type.

Context `{cf : checker_flags}.
Variable Hcf : prop_sub_type = false.
Variable Hcf' : check_univs.

Lemma cumul_sort_confluence {Σ} {wfΣ : wf Σ} {Γ A u v} :
  Σ ;;; Γ A tSort u
  Σ ;;; Γ A tSort v
   v', (Σ ;;; Γ A = tSort v') ×
        (leq_universe (global_ext_constraints Σ) v' u
          leq_universe (global_ext_constraints Σ) v' v).
Proof using Type.
  moveH H'.
  eapply ws_cumul_pb_Sort_r_inv in H as [u'u ?].
  eapply ws_cumul_pb_Sort_r_inv in H' as [vu ?].
  destruct p, p0.
  destruct (closed_red_confluence c c1) as [x [r1 r2]].
  eapply invert_red_sort in r1.
  eapply invert_red_sort in r2. subst. noconf r2.
   u'u. split; auto. now apply red_conv.
Qed.

Lemma cumul_ind_confluence {Σ : global_env_ext} {wfΣ : wf Σ} {Γ A ind u v l l'} :
  Σ ;;; Γ A mkApps (tInd ind u) l
  Σ ;;; Γ A mkApps (tInd ind v) l'
   v' l'',
     Σ ;;; Γ A (mkApps (tInd ind v') l''),
       ws_cumul_pb_terms Σ Γ l l'',
       ws_cumul_pb_terms Σ Γ l' l'',
       R_global_instance Σ (eq_universe Σ) (leq_universe Σ) (IndRef ind) #|l| v' u &
       R_global_instance Σ (eq_universe Σ) (leq_universe Σ) (IndRef ind) #|l'| v' v].
Proof using Type.
  moveH H'.
  eapply ws_cumul_pb_Ind_r_inv in H as [u'u [l'u [redl ru ?]]].
  eapply ws_cumul_pb_Ind_r_inv in H' as [vu [l''u [redr ru' ?]]].
  destruct (closed_red_confluence redl redr) as [nf [redl' redr']].
  eapply invert_red_mkApps_tInd in redl' as [args' [eqnf clΓ conv]].
  eapply invert_red_mkApps_tInd in redr' as [args'' [eqnf' _ conv']].
  rewrite eqnf in eqnf'. solve_discr. subst nf.
  all:auto. u'u, args'; split; auto.
  - transitivity (mkApps (tInd ind u'u) l'u).
    auto. eapply closed_red_mkApps ⇒ //.
  - eapply red_terms_ws_cumul_pb_terms in conv.
    transitivity l'u ⇒ //. now symmetry.
  - eapply red_terms_ws_cumul_pb_terms in conv'.
    transitivity l''u ⇒ //. now symmetry.
Qed.

Lemma ws_cumul_pb_LetIn_l_inv_alt {Σ Γ C na d ty b} {wfΣ : wf Σ.1} :
  wf_local Σ (Γ ,, vdef na d ty)
  Σ ;;; Γ tLetIn na d ty b = C
  Σ ;;; Γ,, vdef na d ty b = lift0 1 C.
Proof using Type.
  intros wf Hlet.
  epose proof (red_expand_let wf).
  etransitivity. eapply red_conv, X.
  eapply ws_cumul_pb_is_open_term_left in Hlet.
  { rewrite on_fvs_letin in Hlet. now move/and3P: Hlet ⇒ []. }
  eapply (@weakening_ws_cumul_pb _ _ _ _ Γ [] [vdef _ _ _]); auto.
  now eapply ws_cumul_pb_LetIn_l_inv in Hlet.
  now eapply wf_local_closed_context.
Qed.

Lemma is_prop_bottom {Σ Γ T s s'} :
  wf_ext Σ
  Σ ;;; Γ T tSort s
  Σ ;;; Γ T tSort s'
  Universe.is_prop s Universe.is_prop s'.
Proof using Hcf Hcf'.
  intros wfΣ hs hs'.
  destruct (cumul_sort_confluence hs hs') as [x' [conv [leq leq']]].
  intros isp.
  eapply leq_universe_prop_r in leq; eauto.
  unshelve eapply (leq_universe_prop_no_prop_sub_type _ _ _ _ _ _ leq'); eauto.
Qed.

Lemma is_sprop_bottom {Σ Γ T s s'} :
  wf_ext Σ
  Σ ;;; Γ T tSort s
  Σ ;;; Γ T tSort s'
  Universe.is_sprop s Universe.is_sprop s'.
Proof using Hcf'.
  intros wfΣ hs hs'.
  destruct (cumul_sort_confluence hs hs') as [x' [conv [leq leq']]].
  intros isp.
  eapply leq_universe_sprop_r in leq; eauto.
  unshelve eapply (leq_universe_sprop_l _ _ _ _ _ leq'); eauto.
Qed.

Lemma prop_sort_eq {Σ Γ u u'} : Universe.is_prop u Universe.is_prop u'
  is_closed_context Γ
  Σ ;;; Γ tSort u = tSort u'.
Proof using Type.
  destruct u, u';
  move⇒ //_ //_.
  constructor ⇒ //. constructor.
  red. red. constructor.
Qed.

Lemma sprop_sort_eq {Σ Γ u u'} : Universe.is_sprop u Universe.is_sprop u'
  is_closed_context Γ
  Σ ;;; Γ tSort u = tSort u'.
Proof using Type.
  destruct u, u';
  move⇒ //_ //_.
  constructor ⇒ //. constructor.
  do 2 red. constructor.
Qed.

Lemma conv_sort_inv {Σ : global_env_ext} {wfΣ : wf Σ} Γ s s' :
  Σ ;;; Γ tSort s = tSort s'
  eq_universe (global_ext_constraints Σ) s s'.
Proof using Type.
  intros H.
  eapply ws_cumul_pb_alt_closed in H as [v [v' [redv redv' eqvv']]].
  eapply invert_red_sort in redv.
  eapply invert_red_sort in redv'. subst.
  now depelim eqvv'.
Qed.

Lemma is_prop_superE {Σ l} : wf_ext Σ Universe.is_prop (Universe.super l) False.
Proof using Hcf'.
  intros wfΣ.
  eapply is_prop_gt; eauto.
  eapply leq_universe_refl.
Qed.

Lemma is_sprop_superE {Σ l} : wf_ext Σ Universe.is_sprop (Universe.super l) False.
Proof using Type.
  intros wfΣ. destruct l ⇒ //.
Qed.

Lemma is_prop_prod {s s'} : Universe.is_prop s' Universe.is_prop (Universe.sort_of_product s s').
Proof using Type.
  intros isp.
  unfold Universe.sort_of_product. rewrite isp. auto.
Qed.

Lemma is_sprop_prod {s s'} : Universe.is_sprop s' Universe.is_sprop (Universe.sort_of_product s s').
Proof using Type.
  intros isp.
  unfold Universe.sort_of_product. rewrite isp orb_true_r. auto.
Qed.

Definition eq_univ_prop (u v : Universe.t) :=
  (Universe.is_prop u Universe.is_prop v)
  (Universe.is_sprop u Universe.is_sprop v).

Definition eq_term_prop (Σ : global_env) napp :=
  PCUICEquality.eq_term_upto_univ_napp Σ eq_univ_prop eq_univ_prop napp.

Reserved Notation " Σ ;;; Γ |- t ~~ u " (at level 50, Γ, t, u at next level).

Inductive cumul_prop `{checker_flags} (Σ : global_env_ext) (Γ : context) : term term Type :=
  | cumul_refl t u :
    is_closed_context Γ
    is_open_term Γ t
    is_open_term Γ u
    eq_term_prop Σ.1 0 t u Σ ;;; Γ |- t ~~ u
  | cumul_red_l t u v :
    is_closed_context Γ
    is_open_term Γ t
    is_open_term Γ u
    is_open_term Γ v
    red1 Σ.1 Γ t v Σ ;;; Γ |- v ~~ u Σ ;;; Γ |- t ~~ u
  | cumul_red_r t u v :
    is_closed_context Γ
    is_open_term Γ t
    is_open_term Γ u
    is_open_term Γ v
    Σ ;;; Γ |- t ~~ v red1 Σ.1 Γ u v Σ ;;; Γ |- t ~~ u
  
where " Σ ;;; Γ |- t ~~ u " := (cumul_prop Σ Γ t u) : type_scope.

Lemma eq_term_prop_impl Σ Re Rle t u :
  wf_ext Σ
   n,
  PCUICEquality.eq_term_upto_univ_napp Σ.1 Re Rle n t u
  subrelation Re eq_univ_prop
  subrelation Rle eq_univ_prop
  eq_term_prop Σ n t u.
Proof using Type.
  intros wfΣ n eq.
  intros.
  eapply PCUICEquality.eq_term_upto_univ_impl in eq. eauto.
  all:auto.
Qed.

Lemma leq_universe_prop_spec Σ u1 u2 :
  check_univs
  wf_ext Σ
  leq_universe Σ u1 u2
  match u1, u2 with
  | Universe.lProp, Universe.lPropTrue
  | Universe.lSProp, Universe.lSPropTrue
  | Universe.lProp, Universe.lSPropFalse
  | Universe.lSProp, Universe.lPropFalse
  | Universe.lProp, Universe.lType _prop_sub_type
  | Universe.lSProp, Universe.lType _False
  | Universe.lType l, Universe.lType l'True
  | Universe.lType _, _False
  end.
Proof using Type.
  intros cu wf leq.
  apply wf_ext_consistent in wf.
  apply (leq_universe_props _ _ _ cu wf leq).
Qed.

Lemma subrelation_eq_universe_eq_prop Σ :
  wf_ext Σ
  subrelation (eq_universe Σ) eq_univ_prop.
Proof using Hcf Hcf'.
  intros wfΣ x y eq'. red.
  split; intros.
  eapply eq_universe_leq_universe in eq'.
  eapply leq_universe_prop_spec in eq'; auto.
  destruct x, y; simpl in *; auto; cong.
  eapply eq_universe_leq_universe in eq'.
  eapply leq_universe_prop_spec in eq'; auto.
  destruct x, y; simpl in *; auto; cong.
Qed.

Lemma subrelation_leq_universe_eq_prop Σ :
  wf_ext Σ
  subrelation (leq_universe Σ) eq_univ_prop.
Proof using Hcf Hcf'.
  intros wfΣ x y eq'. red.
  split; intros;
  eapply leq_universe_prop_spec in eq'; auto;
  destruct x, y; simpl in *; auto; cong.
Qed.

Lemma eq_term_eq_term_prop_impl Σ t u :
  wf_ext Σ
   n,
  PCUICEquality.eq_term_upto_univ_napp Σ.1 (eq_universe Σ) (eq_universe Σ) n t u
  eq_term_prop Σ n t u.
Proof using Hcf Hcf'.
  intros wfΣ n eq. eapply eq_term_prop_impl; eauto.
  now apply subrelation_eq_universe_eq_prop.
  now apply subrelation_eq_universe_eq_prop.
Qed.

Lemma leq_term_eq_term_prop_impl Σ t u :
  wf_ext Σ
   n,
  PCUICEquality.eq_term_upto_univ_napp Σ.1 (eq_universe Σ) (leq_universe Σ) n t u
  eq_term_prop Σ n t u.
Proof using Hcf Hcf'.
  intros wfΣ n eq. eapply eq_term_prop_impl; eauto.
  now apply subrelation_eq_universe_eq_prop.
  now apply subrelation_leq_universe_eq_prop.
Qed.

Lemma cumul_cumul_prop Σ Γ A B :
  wf_ext Σ
  Σ ;;; Γ A B
  Σ ;;; Γ |- A ~~ B.
Proof using Hcf Hcf'.
  intros wfΣ. induction 1.
  - constructor ⇒ //. now apply leq_term_eq_term_prop_impl in c.
  - econstructor 2; eauto.
  - econstructor 3; eauto.
Qed.

Lemma conv_cumul_prop Σ Γ A B :
  wf_ext Σ
  Σ ;;; Γ A = B
  Σ ;;; Γ |- A ~~ B.
Proof using Hcf Hcf'.
  intros wfΣ. induction 1.
  - constructor ⇒ //. now apply eq_term_eq_term_prop_impl in c.
  - econstructor 2; eauto.
  - econstructor 3; eauto.
Qed.

Lemma cumul_prop_alt {Σ : global_env_ext} {Γ T U} {wfΣ : wf Σ} :
  Σ ;;; Γ |- T ~~ U <~>
   nf nf', Σ ;;; Γ T nf, Σ ;;; Γ U nf' & eq_term_prop Σ 0 nf nf'].
Proof using Type.
  split.
  - induction 1.
     t, u. intuition pcuic.
    destruct IHX as [nf [nf' [redl redr eq]]].
     nf, nf'; split; pcuic.
    eapply into_closed_red; eauto.
    transitivity v; auto. apply redl.
    destruct IHX as [nf [nf' [redl redr eq]]].
     nf, nf'; split; pcuic.
    transitivity v; auto.
    apply into_closed_red; auto.
  - intros [nf [nf' [redv redv' eq]]].
    assert (clnf := closed_red_open_right redv).
    assert (clnf' := closed_red_open_right redv').
    destruct redv as [clsrc clT redv]. destruct redv' as [clsrc' clU redv'].
    apply clos_rt_rt1n in redv.
    apply clos_rt_rt1n in redv'.
    induction redv.
    × induction redv'.
    ** constructor; auto.
    ** epose proof (red1_is_open_term _ _ r clsrc clU).
       econstructor 3; eauto.
    × epose proof (red1_is_open_term _ _ r clsrc clT).
      econstructor 2; eauto.
Qed.

Lemma cumul_prop_props {Σ Γ u u'} {wfΣ : wf Σ}:
  Universe.is_prop u
  Σ ;;; Γ |- tSort u ~~ tSort u'
  Universe.is_prop u'.
Proof using Type.
  intros isp equiv.
  eapply cumul_prop_alt in equiv as [nf [nf' [redl redr eq]]].
  eapply invert_red_sort in redl. apply invert_red_sort in redr.
  subst.
  depelim eq. red in e. intuition auto.
Qed.

Lemma cumul_sprop_props {Σ Γ u u'} {wfΣ : wf Σ} :
  Universe.is_sprop u
  Σ ;;; Γ |- tSort u ~~ tSort u'
  Universe.is_sprop u'.
Proof using Type.
  intros isp equiv.
  eapply cumul_prop_alt in equiv as [nf [nf' [redl redr eq]]].
  eapply invert_red_sort in redl. apply invert_red_sort in redr.
  subst.
  depelim eq. red in e. intuition auto.
Qed.

Instance refl_eq_univ_prop : RelationClasses.Reflexive eq_univ_prop.
Proof using Type.
  intros x. red. intuition.
Qed.

Instance sym_eq_univ_prop : RelationClasses.Symmetric eq_univ_prop.
Proof using Type.
  intros x y; unfold eq_univ_prop; intuition.
Qed.

Instance trans_eq_univ_prop : RelationClasses.Transitive eq_univ_prop.
Proof using Type.
  intros x y; unfold eq_univ_prop; intuition.
Qed.

Lemma LevelExprSet_For_all (P : LevelExpr.t Prop) (u : LevelAlgExpr.t) :
  LevelExprSet.For_all P u
  Forall P (LevelExprSet.elements u).
Proof using Type.
  rewrite NonEmptySetFacts.LevelExprSet_For_all_exprs.
  pose proof (NonEmptySetFacts.to_nonempty_list_spec u).
  destruct (NonEmptySetFacts.to_nonempty_list u). rewrite -H. simpl.
  split. constructor; intuition.
  intros H'; inv H'; intuition.
Qed.

Lemma univ_expr_set_in_elements e s :
  LevelExprSet.In e s In e (LevelExprSet.elements s).
Proof using Type.
  rewrite -LevelExprSet.elements_spec1. generalize (LevelExprSet.elements s).
  now eapply InA_In_eq.
Qed.

Lemma univ_epxrs_elements_map g s :
   e, In e (LevelExprSet.elements (NonEmptySetFacts.map g s))
      In e (map g (LevelExprSet.elements s)).
Proof using Type.
  intros e.
  unfold NonEmptySetFacts.map.
  pose proof (NonEmptySetFacts.to_nonempty_list_spec s).
  destruct (NonEmptySetFacts.to_nonempty_list s) as [e' l] eqn:eq.
  rewrite -univ_expr_set_in_elements NonEmptySetFacts.add_list_spec.
  rewrite -H. simpl. rewrite LevelExprSet.singleton_spec.
  intuition auto.
Qed.

Lemma Forall_elements_in P s : Forall P (LevelExprSet.elements s)
  ( x, LevelExprSet.In x s P x).
Proof using Type.
  setoid_rewrite univ_expr_set_in_elements.
  generalize (LevelExprSet.elements s).
  intros.
  split; intros.
  induction H; depelim H0; subst ⇒ //; auto.
  induction l; constructor; auto.
  apply H. repeat constructor.
  apply IHl. intros x inxl. apply H. right; auto.
Qed.

Lemma univ_exprs_map_all P g s :
  Forall P (LevelExprSet.elements (NonEmptySetFacts.map g s))
  Forall (fun xP (g x)) (LevelExprSet.elements s).
Proof using Type.
  rewrite !Forall_elements_in.
  setoid_rewrite NonEmptySetFacts.map_spec.
  intuition auto.
  eapply H. now x.
  destruct H0 as [e' [ins ->]]. apply H; auto.
Qed.

Lemma expr_set_forall_map f g s :
  LevelExprSet.for_all f (NonEmptySetFacts.map g s)
  LevelExprSet.for_all (fun ef (g e)) s.
Proof using Type.
  rewrite /is_true !LevelExprSet.for_all_spec !LevelExprSet_For_all.
  apply univ_exprs_map_all.
Qed.

Lemma univ_is_prop_make x : Universe.is_prop (Universe.make x) = false.
Proof using Type.
  destruct x; simpl; auto.
Qed.


Instance substuniv_eq_univ_prop : SubstUnivPreserving eq_univ_prop.
Proof using Type.
  intros s u1 u2 hu.
  red in hu.
  eapply Forall2_map_inv in hu.
  rewrite /subst_instance_univ.
  destruct s; red; simpl; auto; try intuition reflexivity.
Qed.

Lemma cumul_prop_sym Σ Γ T U :
  wf Σ.1
  Σ ;;; Γ |- T ~~ U
  Σ ;;; Γ |- U ~~ T.
Proof using Type.
  intros wfΣ Hl.
  eapply cumul_prop_alt in Hl as [t' [u' [tt' uu' eq]]].
  eapply cumul_prop_alt.
   u', t'; split; auto.
  now symmetry.
Qed.

Lemma cumul_prop_trans Σ Γ T U V :
  wf Σ
  Σ ;;; Γ |- T ~~ U
  Σ ;;; Γ |- U ~~ V
  Σ ;;; Γ |- T ~~ V.
Proof using Type.
  intros wfΣ Hl Hr.
  eapply cumul_prop_alt in Hl as [t' [u' [tt' uu' eq]]].
  eapply cumul_prop_alt in Hr as [u'' [v' [uu'' vv' eq']]].
  eapply cumul_prop_alt.
  destruct (closed_red_confluence uu' uu'') as [u'nf [ul ur]].
  destruct ul as [? ? ul]. destruct ur as [? ? ur].
  eapply red_eq_term_upto_univ_r in ul as [tnf [redtnf ?]]; tea; tc.
  eapply red_eq_term_upto_univ_l in ur as [unf [redunf ?]]; tea; tc.
   tnf, unf.
  split; auto.
  - transitivity t' ⇒ //. eapply into_closed_red; auto. fvs.
  - transitivity v' ⇒ //. eapply into_closed_red; auto; fvs.
  - now transitivity u'nf.
Qed.

Global Instance cumul_prop_transitive Σ Γ : wf Σ CRelationClasses.Transitive (cumul_prop Σ Γ).
Proof using Type. intros. red. intros. now eapply cumul_prop_trans. Qed.

Lemma cumul_prop_cum_l {Σ Γ A T B} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ |- A ~~ T
  Σ ;;; Γ A B
  Σ ;;; Γ |- B ~~ T.
Proof using Hcf Hcf'.
  intros HT cum.
  eapply cumul_cumul_prop in cum; auto.
  eapply CRelationClasses.transitivity ; eauto.
  eapply cumul_prop_sym; eauto.
Qed.

Lemma cumul_prop_cum_r {Σ Γ A T B} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ |- A ~~ T
  Σ ;;; Γ B A
  Σ ;;; Γ |- B ~~ T.
Proof using Hcf Hcf'.
  intros HT cum.
  eapply cumul_cumul_prop in cum; auto.
  eapply CRelationClasses.transitivity ; eauto.
Qed.

Lemma cumul_prop_conv_l {Σ Γ A T B} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ |- A ~~ T
  Σ ;;; Γ A = B
  Σ ;;; Γ |- B ~~ T.
Proof using Hcf Hcf'.
  intros HT cum.
  eapply conv_cumul_prop in cum; auto.
  eapply CRelationClasses.transitivity ; eauto.
  eapply cumul_prop_sym; eauto.
Qed.

Lemma cumul_prop_conv_r {Σ Γ A T B} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ |- A ~~ T
  Σ ;;; Γ B = A
  Σ ;;; Γ |- B ~~ T.
Proof using Hcf Hcf'.
  intros HT cum.
  eapply conv_cumul_prop in cum; auto.
  eapply CRelationClasses.transitivity ; eauto.
Qed.

Definition conv_decls_prop (Σ : global_env_ext) (Γ Γ' : context) (c d : context_decl) :=
  match decl_body c, decl_body d with
  | None, NoneTrue
  | Some b, Some b'b = b'
  | _, _False
  end.

Notation conv_ctx_prop Σ := (All2_fold (conv_decls_prop Σ)).

Lemma conv_ctx_prop_refl Σ Γ :
  conv_ctx_prop Σ Γ Γ.
Proof using Type.
  induction Γ as [|[na [b|] ty]]; constructor; eauto ⇒ //.
Qed.

Lemma conv_ctx_prop_app Σ Γ Γ' Δ :
  conv_ctx_prop Σ Γ Γ'
  conv_ctx_prop Σ (Γ ,,, Δ) (Γ' ,,, Δ).
Proof using Type.
  induction Δ; simpl; auto.
  destruct a as [na [b|] ty]; intros; constructor ⇒ //.
  now eapply IHΔ.
  now eapply IHΔ.
Qed.

Lemma red1_upto_conv_ctx_prop Σ Γ Γ' t t' :
  red1 Σ.1 Γ t t'
  conv_ctx_prop Σ Γ Γ'
  red1 Σ.1 Γ' t t'.
Proof using Type.
  intros Hred; induction Hred using red1_ind_all in Γ' |- *;
    try solve [econstructor; eauto; try solve [solve_all]].
  - econstructor. destruct (nth_error Γ i) eqn:eq; simpl in H ⇒ //.
    noconf H; simpl in H; noconf H.
    eapply All2_fold_nth in X; eauto.
    destruct X as [d' [Hnth [ctxrel cp]]].
    red in cp. rewrite H in cp. rewrite Hnth /=.
    destruct (decl_body d'); subst ⇒ //.
  - econstructor. eapply IHHred. constructor; simpl; auto ⇒ //.
  - econstructor. eapply IHHred. constructor; simpl ⇒ //.
  - intros h. constructor.
    eapply IHHred. now apply conv_ctx_prop_app.
  - intros h; constructor.
    eapply OnOne2_impl; tea ⇒ /= br br'.
    intros [red IH].
    split⇒ //. now eapply red, conv_ctx_prop_app.
  - intros. constructor; eapply IHHred; constructor; simpl; auto ⇒ //.
  - intros. eapply fix_red_body. solve_all.
    eapply b0. now eapply conv_ctx_prop_app.
  - intros. eapply cofix_red_body. solve_all.
    eapply b0. now eapply conv_ctx_prop_app.
Qed.

Lemma closed_red1_upto_conv_ctx_prop Σ Γ Γ' t t' :
  is_closed_context Γ'
  Σ ;;; Γ t ⇝1 t'
  conv_ctx_prop Σ Γ Γ'
  Σ ;;; Γ' t ⇝1 t'.
Proof using Type.
  intros clΓ' [] conv.
  eapply red1_upto_conv_ctx_prop in clrel_rel; eauto.
  split; auto.
  now rewrite -(All2_fold_length conv).
Qed.

Lemma red_upto_conv_ctx_prop Σ Γ Γ' t t' :
  red Σ.1 Γ t t'
  conv_ctx_prop Σ Γ Γ'
  red Σ.1 Γ' t t'.
Proof using Type.
  intros Hred. intros convctx.
  induction Hred; eauto.
  constructor. now eapply red1_upto_conv_ctx_prop.
  eapply rt_trans; eauto.
Qed.

Lemma closed_red_upto_conv_ctx_prop Σ Γ Γ' t t' :
  is_closed_context Γ'
  Σ ;;; Γ t t'
  conv_ctx_prop Σ Γ Γ'
  Σ ;;; Γ' t t'.
Proof using Type.
  intros clΓ' [] conv.
  eapply red_upto_conv_ctx_prop in clrel_rel; eauto.
  split; auto.
  now rewrite -(All2_fold_length conv).
Qed.

Lemma cumul_prop_prod_inv {Σ Γ na A B na' A' B'} {wfΣ : wf Σ} :
  Σ ;;; Γ |- tProd na A B ~~ tProd na' A' B'
  Σ ;;; Γ ,, vass na A |- B ~~ B'.
Proof using Type.
  intros H; eapply cumul_prop_alt in H as [nf [nf' [redv redv' eq]]].
  eapply invert_red_prod in redv as (? & ? & [? ? ?]).
  eapply invert_red_prod in redv' as (? & ? & [? ? ?]).
  subst. all:auto.
  eapply cumul_prop_alt.
   x0, x2. split; auto.
  eapply closed_red_upto_conv_ctx_prop; eauto. fvs.
  constructor; auto ⇒ //. apply conv_ctx_prop_refl.
  depelim eq. apply eq2.
Qed.

Lemma substitution_untyped_cumul_prop {Σ Γ Δ Γ' s M N} {wfΣ : wf Σ} :
  forallb (is_open_term Γ) s
  untyped_subslet Γ s Δ
  Σ ;;; (Γ ,,, Δ ,,, Γ') |- M ~~ N
  Σ ;;; (Γ ,,, subst_context s 0 Γ') |- (subst s #|Γ'| M) ~~ (subst s #|Γ'| N).
Proof using Type.
  intros cls subs Hcum.
  eapply cumul_prop_alt in Hcum as [nf [nf' [redl redr eq']]].
  eapply closed_red_untyped_substitution in redl; eauto.
  eapply closed_red_untyped_substitution in redr; eauto.
  eapply cumul_prop_alt.
  eexists _, _; split; eauto.
  eapply PCUICEquality.eq_term_upto_univ_substs ⇒ //.
  eapply All2_refl.
  intros x. eapply PCUICEquality.eq_term_upto_univ_refl; typeclasses eauto.
Qed.

Lemma substitution_cumul_prop {Σ Γ Δ Γ' s M N} {wfΣ : wf Σ} :
  subslet Σ Γ s Δ
  Σ ;;; (Γ ,,, Δ ,,, Γ') |- M ~~ N
  Σ ;;; (Γ ,,, subst_context s 0 Γ') |- (subst s #|Γ'| M) ~~ (subst s #|Γ'| N).
Proof using Type.
  intros subs Hcum.
  eapply substitution_untyped_cumul_prop; tea.
  now eapply subslet_open in subs.
  now eapply subslet_untyped_subslet.
Qed.

Lemma substitution_untyped_cumul_prop_equiv {Σ Γ Δ Γ' s s' M} {wfΣ : wf Σ} :
  is_closed_context (Γ ,,, Δ ,,, Γ')
  forallb (is_open_term Γ) s
  forallb (is_open_term Γ) s'
  is_open_term (Γ ,,, Δ ,,, Γ') M
  #|s| = #|Δ| #|s'| = #|Δ|
  All2 (eq_term_prop Σ.1 0) s s'
  Σ ;;; (Γ ,,, subst_context s 0 Γ') |- (subst s #|Γ'| M) ~~ (subst s' #|Γ'| M).
Proof using Type.
  intros clctx cls cls' clM lens_ lens' Heq.
  constructor.
  { eapply is_closed_subst_context; tea. }
  { eapply is_open_term_subst; tea. }
  { relativize #|Γ ,,, _|. eapply is_open_term_subst; tea. len. }
  eapply PCUICEquality.eq_term_upto_univ_substs ⇒ //.
  reflexivity.
Qed.

Lemma cumul_prop_args {Σ Γ args args'} {wfΣ : wf_ext Σ} :
  All2 (cumul_prop Σ Γ) args args'
   nf nf', All2 (closed_red Σ Γ) args nf, All2 (closed_red Σ Γ) args' nf' &
    All2 (eq_term_prop Σ 0) nf nf'].
Proof using Type.
  intros a.
  induction a. [], []; intuition auto.
  destruct IHa as (nfa & nfa' & [redl redr eq]).
  eapply cumul_prop_alt in r as (nf & nf' & [redl' redr' eq'']).
   (nf :: nfa), (nf' :: nfa'); intuition auto.
Qed.

Lemma is_closed_context_snoc_inv Γ d : is_closed_context (d :: Γ)
  is_closed_context Γ closed_decl #|Γ| d.
Proof using Type.
  rewrite on_free_vars_ctx_snoc.
  move/andP ⇒ []; split; auto.
  unfold ws_decl in b. destruct d as [na [bod|] ty]; cbn in *; auto.
  move/andP: b ⇒ /= [] clb clt.
  unfold closed_decl. cbn.
  now rewrite !closedP_on_free_vars clb clt.
  now rewrite closedP_on_free_vars.
Qed.

Lemma red_conv_prop {Σ Γ T U} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ T U
  Σ ;;; Γ |- T ~~ U.
Proof using Hcf Hcf'.
  move/(red_ws_cumul_pb (pb:=Conv)).
  now apply conv_cumul_prop.
Qed.

Lemma substitution_red_terms_conv_prop {Σ Γ Δ Γ' s s' M} {wfΣ : wf_ext Σ} :
  is_closed_context (Γ ,,, Δ ,,, Γ')
  is_open_term (Γ ,,, Δ ,,, Γ') M
  untyped_subslet Γ s Δ
  red_terms Σ Γ s s'
  Σ ;;; (Γ ,,, subst_context s 0 Γ') |- (subst s #|Γ'| M) ~~ (subst s' #|Γ'| M).
Proof using Hcf Hcf'.
  intros.
  apply red_conv_prop.
  eapply closed_red_red_subst; tea.
Qed.

Lemma context_conversion_cumul_prop {Σ Γ Δ M N} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ |- M ~~ N
  Σ Γ = Δ
  Σ ;;; Δ |- M ~~ N.
Proof using Hcf Hcf'.
  induction 1; intros.
  - constructor ⇒ //. eauto with fvs. now rewrite -(All2_fold_length X).
    now rewrite -(All2_fold_length X).
  - specialize (IHX X0). transitivity v ⇒ //.
    eapply red1_red in r.
    assert (Σ ;;; Γ t v) by (now apply into_closed_red).
    symmetry in X0.
    eapply conv_red_conv in X1. 2:exact X0.
    3:{ eapply ws_cumul_pb_refl. fvs. now rewrite (All2_fold_length X0). }
    2:{ eapply closed_red_refl. fvs. now rewrite (All2_fold_length X0). }
    symmetry in X1. now eapply conv_cumul_prop.
  - specialize (IHX X0). transitivity v ⇒ //.
    eapply red1_red in r.
    assert (Σ ;;; Γ u v) by (now apply into_closed_red).
    symmetry in X0.
    eapply conv_red_conv in X1. 2:exact X0.
    3:{ eapply ws_cumul_pb_refl. fvs. now rewrite (All2_fold_length X0). }
    2:{ eapply closed_red_refl. fvs. now rewrite (All2_fold_length X0). }
    symmetry in X1. now eapply conv_cumul_prop.
Qed.

Note: a more general version involving substitution in an extended context Γ ,,, Δ would be harder as it requires a more involved proof about reduction being "preserved" when converting contexts using cumul_prop rather than standard conversion.
Lemma substitution_untyped_cumul_prop_cumul {Σ Γ Δ Δ' s s' M} {wfΣ : wf_ext Σ} :
  is_closed_context (Γ ,,, Δ)
  is_closed_context (Γ ,,, Δ')
  is_open_term (Γ ,,, Δ) M
  untyped_subslet Γ s Δ
  untyped_subslet Γ s' Δ'
  All2 (cumul_prop Σ Γ) s s'
  Σ ;;; Γ |- subst0 s M ~~ subst0 s' M.
Proof using Hcf Hcf'.
  intros clctx clctx' clM subs subs' Heq.
  assert (lens' := All2_length Heq).
  destruct (cumul_prop_args Heq) as (nf & nf' & [redl redr eq]) ⇒ //.
  transitivity (subst0 nf M).
  × eapply (substitution_red_terms_conv_prop (Γ':=[])). 3:tea. all:tea.
  × transitivity (subst0 nf' M).
    constructor.
    - rewrite on_free_vars_ctx_app in clctx. now move/andP: clctx.
    - eapply (is_open_term_subst (Γ' := [])). apply clctx.
      eapply closed_red_terms_open_right in redl. solve_all.
      now rewrite -(All2_length redl) -(untyped_subslet_length subs). apply clM.
    - eapply (is_open_term_subst (Γ' := [])). apply clctx.
      eapply closed_red_terms_open_right in redr. solve_all.
      now rewrite -(All2_length redr) -(untyped_subslet_length subs). apply clM.
    - eapply PCUICEquality.eq_term_upto_univ_substs ⇒ //. reflexivity.
    - eapply cumul_prop_sym; auto.
      eapply (substitution_red_terms_conv_prop (Γ':=[])). 3:tea. all:tea.
      len. len in clM. now rewrite -(untyped_subslet_length subs') -lens' (untyped_subslet_length subs).
Qed.

Lemma substitution1_untyped_cumul_prop {Σ Γ na t u M N} {wfΣ : wf Σ.1} :
  is_open_term Γ u
  Σ ;;; (Γ ,, vass na t) |- M ~~ N
  Σ ;;; Γ |- M {0 := u} ~~ N {0 := u}.
Proof using Type.
  intros clu Hcum.
  eapply (substitution_untyped_cumul_prop (Δ := [_]) (Γ' := [])) in Hcum; cbn; eauto.
  cbn; rewrite clu //.
  repeat constructor.
Qed.

Lemma is_prop_subst_instance_level u l
  : Universe.is_prop (Universe.make (subst_instance_level u l)) = Universe.is_prop (Universe.make l).
Proof using Type.
  destruct l; simpl; auto.
Qed.

Lemma R_opt_variance_impl Re Rle v x y :
  subrelation Re Rle
  R_universe_instance Re x y
  R_opt_variance Re Rle v x y.
Proof using Type.
  intros sub.
  destruct v; simpl; auto.
  intros H. eapply Forall2_map_inv in H.
  induction H in l |- *; simpl; auto.
  destruct l. auto.
  split. destruct t; simpl; auto.
  eauto.
Qed.

Lemma cumul_prop_subst_instance_instance Σ univs u u' (i : Instance.t) :
  wf Σ.1
  consistent_instance_ext Σ univs u
  consistent_instance_ext Σ univs u'
  R_universe_instance eq_univ_prop (subst_instance u i)
    (subst_instance u' i).
Proof using Type.
  intros wfΣ cu cu'. red.
  eapply All2_Forall2, All2_map.
  unfold subst_instance.
  eapply All2_map. eapply All2_refl.
  intros x. red.
  rewrite !is_prop_subst_instance_level /=. split; reflexivity.
Qed.

Lemma cumul_prop_subst_instance {Σ Γ univs u u' T} {wfΣ : wf Σ} :
  is_closed_context Γ
  is_open_term Γ T
  consistent_instance_ext Σ univs u
  consistent_instance_ext Σ univs u'
  Σ ;;; Γ |- subst_instance u T ~~ subst_instance u' T.
Proof using Type.
  intros clΓ clT cu cu'.
  eapply cumul_prop_alt.
  enough ( nf nf' : term,
     red Σ Γ T@[u] nf, red Σ Γ T@[u'] nf' & eq_term_prop Σ 0 nf nf']).
  { destruct X as [nf [nf' [r r' e]]]. nf, nf'. split; try constructor; auto; fvs. }
  eexists _, _; split; intuition auto. clear clΓ clT.
  induction T using PCUICInduction.term_forall_list_ind; cbn; intros;
    try solve [constructor; eauto; solve_all].
  - cbn. constructor.
    destruct s; split; reflexivity.
  - constructor. eapply PCUICEquality.eq_term_upto_univ_impl in IHT1; eauto.
    all:try typeclasses eauto.
    apply IHT2.
  - constructor. now eapply cumul_prop_subst_instance_instance.
  - constructor. red. apply R_opt_variance_impl. intros x y; auto.
    now eapply cumul_prop_subst_instance_instance.
  - constructor. red. apply R_opt_variance_impl. intros x y; auto.
    now eapply cumul_prop_subst_instance_instance.
  - cbn. constructor. splits; simpl; solve_all.
    eapply cumul_prop_subst_instance_instance; tea. reflexivity.
    apply IHT.
    eapply All2_map.
    eapply All_All2; tea. cbn.
    intuition auto. rewrite /id. reflexivity.
Qed.

Lemma R_eq_univ_prop_consistent_instances Σ univs u u' :
  wf Σ.1
  consistent_instance_ext Σ univs u
  consistent_instance_ext Σ univs u'
  R_universe_instance eq_univ_prop u u'.
Proof using Type.
  intros wfΣ cu cu'.
  destruct univs; simpl in ×.
  - destruct u, u' ⇒ /= //. red.
    simpl. constructor.
  - intuition.
    eapply Forall2_map.
    eapply All2_Forall2.
    solve_all.
    eapply All2_impl.
    eapply All_All_All2; eauto. lia.
    simpl; intros.
    intuition.
Qed.

Lemma untyped_subslet_inds Γ ind u u' mdecl :
  untyped_subslet Γ (inds (inductive_mind ind) u (ind_bodies mdecl))
    (subst_instance u' (arities_context (ind_bodies mdecl))).
Proof using Type.
  generalize (le_n #|ind_bodies mdecl|).
  generalize (ind_bodies mdecl) at 1 3 4.
  unfold inds.
  induction l using rev_ind; simpl; first constructor.
  simpl. rewrite app_length /= ⇒ Hlen.
  unfold arities_context.
  simpl. rewrite /arities_context rev_map_spec /=.
  rewrite map_app /= rev_app_distr /=.
  rewrite /= Nat.add_1_r /=.
  constructor.
  rewrite -rev_map_spec. apply IHl. lia.
Qed.

Hint Resolve conv_ctx_prop_refl : core.

Lemma cumul_prop_tProd {Σ : global_env_ext} {Γ na t ty na' t' ty'} {wfΣ : wf_ext Σ} :
  eq_binder_annot na na'
  eq_term Σ.1 Σ t t'
  Σ ;;; Γ ,, vass na t |- ty ~~ ty'
  Σ ;;; Γ |- tProd na t ty ~~ tProd na' t' ty'.
Proof using Hcf Hcf'.
  intros eqann eq cum.
  eapply cumul_prop_alt in cum as (nf & nf' & [redl redr eq']).
  eapply cumul_prop_alt. eexists (tProd na t nf), (tProd na' t' nf'); split; eauto.
  - eapply closed_red_prod_codom; auto.
  - eapply clrel_ctx in redl.
    move: redl; rewrite on_free_vars_ctx_snoc /= ⇒ /andP[]; rewrite /on_free_vars_decl /test_decl /= ⇒ onΓ ont.
    have clt' : is_open_term Γ t'.
    eapply PCUICConfluence.eq_term_upto_univ_napp_on_free_vars in eq; tea.
    eapply closed_red_prod; auto.
    now eapply closed_red_refl.
    eapply closed_red_upto_conv_ctx_prop; eauto.
    now rewrite on_free_vars_ctx_snoc /= onΓ.
    repeat (constructor; auto).
  - repeat (constructor; auto).
    eapply eq_term_eq_term_prop_impl; auto.
Qed.

Lemma cumul_prop_tLetIn (Σ : global_env_ext) {Γ na t d ty na' t' d' ty'} {wfΣ : wf_ext Σ} :
  eq_binder_annot na na'
  eq_term Σ.1 Σ t t'
  eq_term Σ.1 Σ d d'
  Σ ;;; Γ ,, vdef na d t |- ty ~~ ty'
  Σ ;;; Γ |- tLetIn na d t ty ~~ tLetIn na' d' t' ty'.
Proof using Hcf Hcf'.
  intros eqann eq eq' cum.
  eapply cumul_prop_alt in cum as (nf & nf' & [redl redr eq'']).
  eapply cumul_prop_alt.
  assert(eq_context_upto Σ (eq_universe Σ) (eq_universe Σ) (Γ ,, vdef na d t) (Γ ,, vdef na' d' t')).
  { repeat constructor; pcuic. eapply eq_context_upto_refl; typeclasses eauto. }
  eapply (closed_red_eq_context_upto_l (pb:=Conv)) in redr; eauto.
  2:{ eapply clrel_ctx in redl. rewrite !on_free_vars_ctx_snoc in redl |- ×.
      move/andP: redl ⇒ [] → /= /andP[] cld clt.
      eapply PCUICConfluence.eq_term_upto_univ_napp_on_free_vars in cld; tea.
      eapply PCUICConfluence.eq_term_upto_univ_napp_on_free_vars in clt; tea.
      rewrite /on_free_vars_decl /test_decl /=.
      now rewrite cld clt. }
  destruct redr as [v' [redv' eq''']].
  eexists (tLetIn na d t nf), (tLetIn na' d' t' v'); split.
  - now eapply closed_red_letin_body.
  - now eapply closed_red_letin_body.
  - constructor; eauto using eq_term_eq_term_prop_impl.
    apply eq_term_eq_term_prop_impl; auto.
    apply eq_term_eq_term_prop_impl; auto.
    transitivity nf'. auto. now eapply eq_term_eq_term_prop_impl.
Qed.

Lemma cumul_prop_mkApps {Σ Γ f args f' args'} {wfΣ : wf_ext Σ} :
  is_closed_context Γ
  is_open_term Γ f
  is_open_term Γ f'
  eq_term Σ.1 Σ f f'
  All2 (cumul_prop Σ Γ) args args'
  Σ ;;; Γ |- mkApps f args ~~ mkApps f' args'.
Proof using Hcf Hcf'.
  intros clΓ clf clf' eq eq'.
  eapply cumul_prop_alt.
  eapply cumul_prop_args in eq' as (nf & nf' & [redl redr eq']).
   (mkApps f nf), (mkApps f' nf'); split.
  - eapply closed_red_mkApps; auto.
  - eapply closed_red_mkApps; auto.
  - eapply eq_term_upto_univ_mkApps.
    eapply eq_term_upto_univ_impl.
    5:eapply eq. all:auto. 4:lia.
    all:now eapply subrelation_eq_universe_eq_prop.
Qed.

Hint Resolve closed_red_open_right : fvs.

Lemma red_cumul_prop {Σ Γ} {wfΣ : wf Σ} :
  CRelationClasses.subrelation (closed_red Σ Γ) (cumul_prop Σ Γ).
Proof using Type.
  intros x y r. eapply cumul_prop_alt. y, y.
  split; fvs. eapply closed_red_refl; fvs. apply eq_term_upto_univ_refl; typeclasses eauto.
Qed.

Lemma eq_term_prop_mkApps_inv {Σ ind u args ind' u' args'} {wfΣ : wf_ext Σ} :
   n, eq_term_prop Σ n (mkApps (tInd ind u) args) (mkApps (tInd ind' u') args')
  All2 (eq_term_prop Σ 0) args args'.
Proof using Type.
  revert args'.
  induction args using rev_ind; intros args' n; simpl.
  intros H; destruct args' using rev_case.
  constructor.
  depelim H. solve_discr. eapply app_eq_nil in H1 as [_ H]. congruence.
  intros H.
  destruct args' using rev_case. depelim H. solve_discr.
  apply app_eq_nil in H1 as [_ H]; discriminate.
  rewrite !mkApps_app /= in H. depelim H.
  eapply All2_app ⇒ //.
  eapply IHargs; eauto. repeat constructor.
  red. apply H0.
Qed.

Lemma cumul_prop_mkApps_Ind_inv {Σ Γ ind u args ind' u' args'} {wfΣ : wf_ext Σ} :
  Σ ;;; Γ |- mkApps (tInd ind u) args ~~ mkApps (tInd ind' u') args'
  All2 (cumul_prop Σ Γ) args args'.
Proof using Type.
  intros eq.
  eapply cumul_prop_alt in eq as (nf & nf' & [redl redr eq']).
  eapply invert_red_mkApps_tInd in redl as [args'' [-> clΓ eqargs]].
  eapply invert_red_mkApps_tInd in redr as [args''' [-> _ eqargs']].
  eapply All2_trans. typeclasses eauto.
  eapply All2_impl; eauto. eapply red_cumul_prop.
  eapply All2_trans. typeclasses eauto.
  2:{ eapply All2_symP. intros x y H; now eapply cumul_prop_sym.
      eapply All2_impl; eauto. eapply red_cumul_prop. }
  eapply eq_term_prop_mkApps_inv in eq' ⇒ //.
  eapply closed_red_terms_open_right in eqargs.
  eapply closed_red_terms_open_right in eqargs'.
  solve_all. constructor; auto.
Qed.

Global Instance cumul_prop_sym' Σ Γ : wf Σ.1 CRelationClasses.Symmetric (cumul_prop Σ Γ).
Proof using Type.
  now intros wf x y; eapply cumul_prop_sym.
Qed.

Notation eq_term_napp Σ n x y :=
  (eq_term_upto_univ_napp Σ (eq_universe Σ) (eq_universe Σ) n x y).

Notation leq_term_napp Σ n x y :=
    (eq_term_upto_univ_napp Σ (eq_universe Σ) (leq_universe Σ) n x y).

Lemma eq_term_upto_univ_napp_leq {Σ : global_env_ext} {n x y} :
  eq_term_napp Σ n x y
  leq_term_napp Σ n x y.
Proof using Type.
  eapply eq_term_upto_univ_impl; auto; typeclasses eauto.
Qed.

Lemma cumul_prop_is_open {Σ Γ T U} :
  Σ ;;; Γ |- T ~~ U
   is_closed_context Γ, is_open_term Γ T & is_open_term Γ U].
Proof using Type.
  induction 1; split; auto.
Qed.

Lemma is_closed_context_weaken {Γ Δ} :
  is_closed_context Γ
  is_closed_context Δ
  is_closed_context (Γ ,,, Δ).
Proof using Type.
  rewrite on_free_vars_ctx_app ⇒ → /=.
  eapply on_free_vars_ctx_impl. discriminate.
Qed.

Lemma eq_context_upto_map2_set_binder_name Σ eqterm leterm eq le pctx pctx' Γ Δ :
  eq_context_gen eqterm leterm pctx pctx'
  eq_context_upto Σ eq le Γ Δ
  eq_context_upto Σ eq le
    (map2 set_binder_name (forget_types pctx) Γ)
    (map2 set_binder_name (forget_types pctx') Δ).
Proof using Type.
intros eqp.
induction 1 in pctx, pctx', eqp |- ×.
- induction eqp; cbn; constructor.
- depelim eqp. simpl. constructor.
  simpl. constructor; auto.
  destruct c, p; constructor; auto.
Qed.

Well-typed terms in the leq_term relation live in the same sort hierarchy.
Lemma typing_leq_term_prop (Σ : global_env_ext) Γ t t' T T' :
  wf Σ.1
  Σ ;;; Γ |- t : T
  on_udecl Σ.1 Σ.2
  Σ ;;; Γ |- t' : T'
   n, leq_term_napp Σ n t' t
  Σ ;;; Γ |- T ~~ T'.
Proof using Hcf Hcf'.
  intros wfΣ Ht.
  revert Σ wfΣ Γ t T Ht t' T'.
  eapply (typing_ind_env
  (fun Σ Γ t T
   t' T' : term,
  on_udecl Σ.1 Σ.2
  Σ;;; Γ |- t' : T'
   n, leq_term_napp Σ n t' t
  Σ ;;; Γ |- T ~~ T')%type
  (fun Σ Γwf_local Σ Γ)); auto;intros Σ wfΣ Γ wfΓ; intros.

  1-13:match goal with
  [ H : leq_term_napp _ _ _ _ |- _ ] ⇒ depelim H
  end; assert (wf_ext Σ) by (split; assumption).

  14:{ assert (wf_ext Σ) by (split; assumption). specialize (X1 _ _ H X5 _ X6).
       eapply cumul_prop_cum_l; tea.
       eapply cumulSpec_cumulAlgo_curry in X4; tea; fvs. }

  6:{ eapply inversion_App in X6 as (na' & A' & B' & hf & ha & cum); auto.
      specialize (X3 _ _ H hf _ X7_1).
      specialize (X5 _ _ H ha _ (eq_term_upto_univ_napp_leq X7_2)).
      eapply cumul_cumul_prop in cum; auto.
      transitivity (B' {0 := u0}) ⇒ //.
      eapply cumul_prop_prod_inv in X3 ⇒ //.
      transitivity (B' {0 := u}).
      eapply substitution1_untyped_cumul_prop in X3. eapply X3.
      now eapply subject_is_open_term.
      destruct (cumul_prop_is_open cum).
      constructor; auto. eapply on_free_vars_subst ⇒ /= //.
      eapply subject_is_open_term in X4. now rewrite X4.
      rewrite shiftnP_add. now eapply cumul_prop_is_open in X3 as [].
      eapply eq_term_eq_term_prop_impl ⇒ //.
      eapply PCUICEquality.eq_term_upto_univ_substs.
      all:try typeclasses eauto.
      eapply PCUICEquality.eq_term_upto_univ_refl. all:try typeclasses eauto.
      constructor. 2:constructor. now symmetry. }

  - eapply inversion_Rel in X0 as [decl' [wfΓ' [Hnth Hcum]]]; auto.
    rewrite Hnth in H; noconf H. now eapply cumul_cumul_prop in Hcum.

  - eapply inversion_Sort in X0 as [wf [wfs Hs]]; auto.
    apply subrelation_leq_universe_eq_prop in x ⇒ //.
    apply cumul_cumul_prop in Hs ⇒ //.
    eapply cumul_prop_trans; eauto.
    destruct (cumul_prop_is_open Hs) as [].
    constructor ⇒ //. constructor. symmetry.
    split; split; intros H'. 1,2:now eapply is_prop_superE in H'.
    1,2:now eapply is_sprop_superE in H'.

  - eapply inversion_Prod in X4 as [s1' [s2' [Ha [Hb Hs]]]]; auto.
    specialize (X1 _ _ H Ha).
    specialize (X1 _ (eq_term_upto_univ_napp_leq X5_1)).
    eapply context_conversion in Hb.
    3:{ constructor. apply conv_ctx_refl. constructor. eassumption.
      constructor. eauto. }
    2:{ constructor; eauto. now s1. }
    specialize (X3 _ _ H Hb _ X5_2).
    eapply cumul_cumul_prop in Hs ⇒ //.
    eapply cumul_prop_trans; eauto.
    constructor; fvs. constructor.
    split.
    × split; intros Hs'; apply is_prop_sort_prod in Hs'; eapply is_prop_prod; eapply cumul_prop_props; eauto.
      now eapply cumul_prop_sym; eauto.
    × split; intros Hs'; apply is_sprop_sort_prod in Hs'; eapply is_sprop_prod; eapply cumul_sprop_props; eauto.
      now eapply cumul_prop_sym; eauto.

  - eapply inversion_Lambda in X4 as (s & B & dom & bod & cum).
    specialize (X1 _ _ H dom _ (eq_term_upto_univ_napp_leq X5_1)).
    specialize (X3 t0 B H).
    assert(conv_context cumulAlgo_gen Σ (Γ ,, vass na ty) (Γ ,, vass n t)).
    { repeat constructor; pcuic. }
    forward X3 by eapply context_conversion; eauto; pcuic.
    specialize (X3 _ X5_2). eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    eapply cumul_prop_tProd; eauto. now symmetry. now symmetry. auto.

  - eapply inversion_LetIn in X6 as (s1' & A & dom & bod & codom & cum); auto.
    specialize (X1 _ _ H dom _ (eq_term_upto_univ_napp_leq X7_2)).
    specialize (X3 _ _ H bod _ (eq_term_upto_univ_napp_leq X7_1)).
    assert(conv_context cumulAlgo_gen Σ (Γ ,, vdef na t ty) (Γ ,, vdef n b b_ty)).
    { repeat constructor; pcuic. }
    specialize (X5 u A H).
    forward X5 by eapply context_conversion; eauto; pcuic.
    specialize (X5 _ X7_3).
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    eapply cumul_prop_tLetIn; auto; now symmetry.

  - eapply inversion_Const in X1 as [decl' [wf [declc [cu cum]]]]; auto.
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    pose proof (declared_constant_inj _ _ H declc); subst decl'.
    eapply cumul_prop_subst_instance; eauto. fvs.
    destruct (cumul_prop_is_open cum) as [].
    now rewrite on_free_vars_subst_instance in i0.

  - eapply inversion_Ind in X1 as [decl' [idecl' [wf [declc [cu cum]]]]]; auto.
    pose proof (declared_inductive_inj isdecl declc) as [-> ->].
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    eapply cumul_prop_subst_instance; tea. fvs.
    destruct (cumul_prop_is_open cum) as [].
    now rewrite on_free_vars_subst_instance in i0.

  - eapply inversion_Construct in X1 as [decl' [idecl' [cdecl' [wf [declc [cu cum]]]]]]; auto.
    pose proof (declared_constructor_inj isdecl declc) as [-> [-> ->]].
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    unfold type_of_constructor.
    have clars : is_closed_context (arities_context (ind_bodies mdecl))@[u].
    { eapply wf_local_closed_context. eapply (wf_arities_context_inst isdecl H). }
    have clty : is_open_term (Γ,,, arities_context (ind_bodies mdecl)) (cstr_type cdecl').
    { eapply closedn_on_free_vars, closed_upwards.
      eapply PCUICClosedTyp.declared_constructor_closed_gen_type; tea. len. }
    rewrite on_free_vars_ctx_subst_instance in clars.
    etransitivity.
    eapply (@substitution_untyped_cumul_prop_equiv _ Γ (subst_instance u (arities_context mdecl.(ind_bodies))) []); auto.
    × simpl.
      apply is_closed_context_weaken. fvs.
      now rewrite on_free_vars_ctx_subst_instance.
    × eapply on_free_vars_terms_inds.
    × eapply on_free_vars_terms_inds.
    × simpl.
      rewrite on_free_vars_subst_instance /=.
      len. len in clty.
    × len.
    × len.
    × generalize (ind_bodies mdecl).
      induction l; simpl; constructor; auto.
      constructor. simpl. eapply R_opt_variance_impl. now intros x.
      eapply R_eq_univ_prop_consistent_instances; eauto.
    × simpl.
      eapply (@substitution_untyped_cumul_prop _ Γ (subst_instance u0 (arities_context mdecl.(ind_bodies))) []) ⇒ //.
      eapply on_free_vars_terms_inds.
      eapply untyped_subslet_inds. simpl.
      eapply cumul_prop_subst_instance ⇒ //; eauto.
      eapply is_closed_context_weaken; fvs.
      len in clty; len.

  - eapply inversion_Case in X9 as (mdecl' & idecl' & isdecl' & indices' & data & cum); auto.
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto. simpl.
    clear X8.
    destruct (declared_inductive_inj isdecl isdecl'). subst.
    destruct data.
    specialize (X7 _ _ H5 scrut_ty _ (eq_term_upto_univ_napp_leq X10)).
    eapply cumul_prop_sym ⇒ //.
    destruct e as [eqpars [eqinst [eqpctx eqpret]]].
    rewrite /ptm.
    eapply cumul_prop_mkApps ⇒ //. fvs.
    { eapply cumul_prop_is_open in cum as [].
      rewrite on_free_vars_mkApps in i0.
      move/andP: i0 ⇒ [] //. }
    { now eapply type_it_mkLambda_or_LetIn, subject_is_open_term in pret. }
    { eapply PCUICEquality.eq_term_upto_univ_it_mkLambda_or_LetIn ⇒ //. tc.
      rewrite /predctx.
      rewrite /case_predicate_context /case_predicate_context_gen.
      rewrite /pre_case_predicate_context_gen /inst_case_context.
      eapply eq_context_upto_map2_set_binder_name; tea.
      eapply eq_context_upto_subst_context; tea. tc.
      eapply eq_context_upto_univ_subst_instance; try tc. tas.
      now eapply All2_rev. }
    eapply All2_app. 2:(repeat constructor; auto using eq_term_eq_term_prop_impl).
    eapply cumul_prop_mkApps_Ind_inv in X7 ⇒ //.
    eapply All2_app_inv_l in X7 as (?&?&?&?&?).
    eapply All2_symP ⇒ //. typeclasses eauto.
    eapply app_inj in e as [eql ->] ⇒ //.
    move: (All2_length eqpars).
    move: (All2_length a0). lia. fvs. now eapply subject_is_open_term in scrut_ty.
    now apply subject_is_open_term in X6.

  - eapply inversion_Proj in X3 as (u' & mdecl' & idecl' & cdecl' & pdecl' & args' & inv); auto.
    intuition auto.
    specialize (X2 _ _ H0 a0 _ (eq_term_upto_univ_napp_leq X4)).
    eapply eq_term_upto_univ_napp_leq in X4.
    eapply cumul_cumul_prop in b; eauto.
    eapply cumul_prop_trans; eauto.
    eapply cumul_prop_mkApps_Ind_inv in X2 ⇒ //.
    destruct (declared_projection_inj a isdecl) as [<- [<- [<- <-]]].
    destruct (isType_mkApps_Ind_inv _ isdecl X0 (validity X1)) as [ps [argss [_ cu]]]; eauto.
    destruct (isType_mkApps_Ind_inv _ isdecl X0 (validity a0)) as [? [? [_ cu']]]; eauto.
    epose proof (wf_projection_context _ _ isdecl c1).
    epose proof (wf_projection_context _ _ isdecl c2).
    transitivity (subst0 (c0 :: List.rev args') (subst_instance u pdecl'.(proj_type))).
    eapply (@substitution_untyped_cumul_prop_cumul Σ Γ (projection_context p.(proj_ind) mdecl' idecl' u)) ⇒ //.
    × cbn -[projection_context on_free_vars_ctx].
      eapply is_closed_context_weaken; tas. fvs. now eapply wf_local_closed_context in X3.
    × cbn -[projection_context on_free_vars_ctx].
      eapply is_closed_context_weaken; tas. fvs. now eapply wf_local_closed_context in X6.
    × epose proof (declared_projection_closed a).
      len. rewrite on_free_vars_subst_instance. simpl; len.
      rewrite (declared_minductive_ind_npars a) in H1.
      rewrite closedn_on_free_vars //. eapply closed_upwards; tea. lia.
    × epose proof (projection_subslet Σ _ _ _ _ _ _ _ _ _ isdecl wfΣ X1 (validity X1)).
      now eapply subslet_untyped_subslet.
    × epose proof (projection_subslet Σ _ _ _ _ _ _ _ _ _ a wfΣ a0 (validity a0)).
      now eapply subslet_untyped_subslet.
    × constructor ⇒ //. symmetry; constructor ⇒ //; fvs.
      { now eapply leq_term_eq_term_prop_impl. }
      { now eapply All2_rev. }
    × eapply (@substitution_cumul_prop Σ Γ (projection_context p.(proj_ind) mdecl' idecl' u') []) ⇒ //.
      { apply (projection_subslet Σ _ _ _ _ _ _ _ _ _ a wfΣ a0 (validity a0)). }
      eapply cumul_prop_subst_instance; eauto.
      cbn -[projection_context on_free_vars_ctx]; eapply is_closed_context_weaken ⇒ //; fvs.
      epose proof (declared_projection_closed a).
      simpl; len.
      rewrite (declared_minductive_ind_npars a) in H1.
      rewrite closedn_on_free_vars //. eapply closed_upwards; tea. lia.

  - eapply inversion_Fix in X2 as (decl' & fixguard' & Hnth & types' & bodies & wffix & cum); auto.
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    eapply All2_nth_error in a; eauto.
    destruct a as [[[a _] _] _].
    constructor; [fvs|..].
    { eapply nth_error_all in X0 as [? [dty ?]]; tea.
      now apply subject_is_open_term in dty. }
    { now eapply cumul_prop_is_open in cum as []. }
    eapply eq_term_eq_term_prop_impl; eauto.
    now symmetry in a.

  - eapply inversion_CoFix in X2 as (decl' & fixguard' & Hnth & types' & bodies & wfcofix & cum); auto.
    eapply cumul_cumul_prop in cum; eauto.
    eapply cumul_prop_trans; eauto.
    eapply All2_nth_error in a; eauto.
    destruct a as [[[a _] _] _].
    constructor; [fvs|..].
    { eapply nth_error_all in X0 as [? [dty ?]]; tea.
      now apply subject_is_open_term in dty. }
    { now eapply cumul_prop_is_open in cum as []. }
    eapply eq_term_eq_term_prop_impl; eauto.
    now symmetry in a.
Qed.

End no_prop_leq_type.