Library MetaCoq.Erasure.ESpineView

Require Import List ssreflect ssrbool.
From MetaCoq.Template Require Import utils BasicAst.
From MetaCoq.Erasure Require Import EAst EAstUtils EInduction EReflect.
From MetaCoq.PCUIC Require Import PCUICSize.
From Equations Require Import Equations.
Set Equations Transparent.

Module TermSpineView.

Inductive t : term Set :=
| tBox : t EAst.tBox
| tRel (n : nat) : t (EAst.tRel n)
| tVar (n : ident) : t (EAst.tVar n)
| tEvar (n : nat) (e : list term) : t (EAst.tEvar n e)
| tLambda n b : t (EAst.tLambda n b)
| tLetIn n b b' : t (EAst.tLetIn n b b')
| tApp (f : term) (l : list term) (napp : ~~ isApp f) (nnil : l nil) : t (mkApps f l)
| tConst kn : t (tConst kn)
| tConstruct i n args : t (tConstruct i n args)
| tCase ci p brs : t (tCase ci p brs)
| tProj p c : t (tProj p c)
| tFix mfix idx : t (tFix mfix idx)
| tCoFix mfix idx : t (tCoFix mfix idx).
Derive Signature for t.

Definition view : x : term, t x :=
  MkAppsInd.case (P:=fun xt x)
    tBox tRel tVar
    (fun n ltEvar n l)
    (fun n ttLambda n t)
    (fun n b ttLetIn n b t)
    (fun f l napp nniltApp f l napp nnil)
    tConst
    tConstruct
    (fun p t ltCase p t l)
    (fun p ttProj p t)
    (fun mfix ntFix mfix n)
    (fun mfix ntCoFix mfix n).

Lemma view_mkApps {f v} (vi : t (mkApps f v)) : ~~ isApp f v []
   hf vn, vi = tApp f v hf vn.
Proof.
  intros ha hv.
  depelim vi.
  all: try (revert H; eapply DepElim.simplification_sigma1; intros H'; solve_discr).
  intros He.
  epose proof (DepElim.pr2_uip (A:=EAst.term) He). subst vi0.
  do 2 eexists; reflexivity.
Qed.

End TermSpineView.