Library MetaCoq.Translations.standard_model
From MetaCoq.Template Require Import utils All.
From MetaCoq.Translations Require Import translation_utils sigma.
Import MCMonadNotation.
Infix "≤" := Nat.leb.
Definition default_term := tVar "constant_not_found".
Definition debug_term msg:= tVar ("debug: " ^ msg).
From MetaCoq.Translations Require Import translation_utils sigma.
Import MCMonadNotation.
Infix "≤" := Nat.leb.
Definition default_term := tVar "constant_not_found".
Definition debug_term msg:= tVar ("debug: " ^ msg).
****************** WARNING : WIP ! ****************** *
Print Typing Flags.
Unset Guard Checking.
MetaCoq Quote Definition tUnit := unit.
MetaCoq Quote Definition ttt := tt.
Fixpoint kproj (k : nat) (t : term) :=
match k with
| 0 ⇒ t
| S k ⇒ kproj k (proj1 t)
end.
Notation app0 := (fun t ⇒ subst_app t [tRel 0]).
Fixpoint tsl (ΣE : tsl_context) (Γ : context) (t : term) {struct t}
: tsl_result term :=
match t with
| tSort s ⇒ Γ' <- tsl_ctx ΣE Γ ;;
ret (tLambda (nNamed "γ") Γ' (tSort s))
| tRel k ⇒ Γ' <- tsl_ctx ΣE Γ ;;
ret (tLambda (nNamed "γ") Γ' (proj2 (kproj k (tRel 0))))
| tCast t c A ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
A' <- tsl ΣE Γ A ;;
ret (tLambda (nNamed "γ") Γ'
(tCast (app0 t') c (app0 A')))
| tProd na A B ⇒ Γ' <- tsl_ctx ΣE Γ ;;
A' <- tsl ΣE Γ A ;;
B' <- tsl ΣE (Γ ,, vass na A) B ;;
ret (tLambda (nNamed "γ") Γ'
(tProd na (app0 A')
(subst_app B' [pair Γ' A' (tRel 1) (tRel 0)])))
| tLambda na A t ⇒ Γ' <- tsl_ctx ΣE Γ ;;
A' <- tsl ΣE Γ A ;;
t' <- tsl ΣE (Γ ,, vass na A) t ;;
ret (tLambda (nNamed "γ") Γ'
(tLambda na (app0 A')
(subst_app t' [pair Γ' (up A') (tRel 1) (tRel 0)])))
| tLetIn na t A u ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
A' <- tsl ΣE Γ A ;;
u' <- tsl ΣE (Γ ,, vdef na t A) u ;;
ret (tLambda (nNamed "γ") Γ' (tLetIn na t' A' u'))
| tApp t lu ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
lu' <- monad_map (tsl ΣE Γ) lu ;;
ret (tLambda (nNamed "γ") Γ' (mkApps (app0 t') (map app0 lu')))
| tConst s univs ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- lookup_tsl_table' (snd ΣE) (ConstRef s) ;;
ret (tLambda (nNamed "γ") Γ' (subst_app t' [ttt]))
| tInd i univs ⇒ lookup_tsl_table' (snd ΣE) (IndRef i)
| tConstruct i n univs ⇒ lookup_tsl_table' (snd ΣE) (ConstructRef i n)
| tProj p t ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
ret (tLambda (nNamed "γ") Γ' (tProj p t'))
| _ ⇒ ret t
end
with tsl_ctx (ΣE : tsl_context) (Γ : context) {struct Γ} : tsl_result term :=
match Γ with
| [] ⇒ ret tUnit
| {| decl_body := None; decl_type := A |} :: Γ ⇒
Γ' <- tsl_ctx ΣE Γ ;;
A' <- tsl ΣE Γ A ;;
ret (pack Γ' A')
| _ ⇒ todo "tsl"
end.
#[global]
Instance param : Translation :=
{| tsl_id := tsl_ident ;
tsl_tm := fun ΣE ⇒ tsl ΣE [] ;
tsl_ty := Some (fun ΣE t ⇒ t' <- tsl ΣE [] t ;; ret (subst_app t' [ttt])) ;
tsl_ind := todo "tsl" |}.
Definition toto := fun (f : ∀ A, A → A) ⇒ f Type.
MetaCoq Run (Translate emptyTC "toto").
Check (totoᵗ : unit → (∀ A, A → A) → Type → Type).
Definition FALSE := ∀ X, X.
MetaCoq Run (TC <- Translate emptyTC "FALSE" ;; tmPrint "toto" ;;
Implement TC "a" (∀ (A : Set) (A0 : A → Set) (x : A), FALSE → A0 x)).
Next Obligation.
compute in X. apply X.
Defined.
Definition T := ∀ A, A → A.
MetaCoq Run (Translate emptyTC "T").
Definition tm := ((fun A (x:A) ⇒ x) (Type → Type) (fun x ⇒ x)).
MetaCoq Run (Translate emptyTC "tm").
Unset Guard Checking.
MetaCoq Quote Definition tUnit := unit.
MetaCoq Quote Definition ttt := tt.
Fixpoint kproj (k : nat) (t : term) :=
match k with
| 0 ⇒ t
| S k ⇒ kproj k (proj1 t)
end.
Notation app0 := (fun t ⇒ subst_app t [tRel 0]).
Fixpoint tsl (ΣE : tsl_context) (Γ : context) (t : term) {struct t}
: tsl_result term :=
match t with
| tSort s ⇒ Γ' <- tsl_ctx ΣE Γ ;;
ret (tLambda (nNamed "γ") Γ' (tSort s))
| tRel k ⇒ Γ' <- tsl_ctx ΣE Γ ;;
ret (tLambda (nNamed "γ") Γ' (proj2 (kproj k (tRel 0))))
| tCast t c A ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
A' <- tsl ΣE Γ A ;;
ret (tLambda (nNamed "γ") Γ'
(tCast (app0 t') c (app0 A')))
| tProd na A B ⇒ Γ' <- tsl_ctx ΣE Γ ;;
A' <- tsl ΣE Γ A ;;
B' <- tsl ΣE (Γ ,, vass na A) B ;;
ret (tLambda (nNamed "γ") Γ'
(tProd na (app0 A')
(subst_app B' [pair Γ' A' (tRel 1) (tRel 0)])))
| tLambda na A t ⇒ Γ' <- tsl_ctx ΣE Γ ;;
A' <- tsl ΣE Γ A ;;
t' <- tsl ΣE (Γ ,, vass na A) t ;;
ret (tLambda (nNamed "γ") Γ'
(tLambda na (app0 A')
(subst_app t' [pair Γ' (up A') (tRel 1) (tRel 0)])))
| tLetIn na t A u ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
A' <- tsl ΣE Γ A ;;
u' <- tsl ΣE (Γ ,, vdef na t A) u ;;
ret (tLambda (nNamed "γ") Γ' (tLetIn na t' A' u'))
| tApp t lu ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
lu' <- monad_map (tsl ΣE Γ) lu ;;
ret (tLambda (nNamed "γ") Γ' (mkApps (app0 t') (map app0 lu')))
| tConst s univs ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- lookup_tsl_table' (snd ΣE) (ConstRef s) ;;
ret (tLambda (nNamed "γ") Γ' (subst_app t' [ttt]))
| tInd i univs ⇒ lookup_tsl_table' (snd ΣE) (IndRef i)
| tConstruct i n univs ⇒ lookup_tsl_table' (snd ΣE) (ConstructRef i n)
| tProj p t ⇒ Γ' <- tsl_ctx ΣE Γ ;;
t' <- tsl ΣE Γ t ;;
ret (tLambda (nNamed "γ") Γ' (tProj p t'))
| _ ⇒ ret t
end
with tsl_ctx (ΣE : tsl_context) (Γ : context) {struct Γ} : tsl_result term :=
match Γ with
| [] ⇒ ret tUnit
| {| decl_body := None; decl_type := A |} :: Γ ⇒
Γ' <- tsl_ctx ΣE Γ ;;
A' <- tsl ΣE Γ A ;;
ret (pack Γ' A')
| _ ⇒ todo "tsl"
end.
#[global]
Instance param : Translation :=
{| tsl_id := tsl_ident ;
tsl_tm := fun ΣE ⇒ tsl ΣE [] ;
tsl_ty := Some (fun ΣE t ⇒ t' <- tsl ΣE [] t ;; ret (subst_app t' [ttt])) ;
tsl_ind := todo "tsl" |}.
Definition toto := fun (f : ∀ A, A → A) ⇒ f Type.
MetaCoq Run (Translate emptyTC "toto").
Check (totoᵗ : unit → (∀ A, A → A) → Type → Type).
Definition FALSE := ∀ X, X.
MetaCoq Run (TC <- Translate emptyTC "FALSE" ;; tmPrint "toto" ;;
Implement TC "a" (∀ (A : Set) (A0 : A → Set) (x : A), FALSE → A0 x)).
Next Obligation.
compute in X. apply X.
Defined.
Definition T := ∀ A, A → A.
MetaCoq Run (Translate emptyTC "T").
Definition tm := ((fun A (x:A) ⇒ x) (Type → Type) (fun x ⇒ x)).
MetaCoq Run (Translate emptyTC "tm").