Library MetaCoq.Erasure.EWtAst
From Coq Require Import ssreflect ssrbool.
From MetaCoq.Template Require Import utils BasicAst Universes.
From MetaCoq.PCUIC Require Import PCUICPrimitive.
From MetaCoq.Erasure Require Import EAst EAstUtils EInduction ECSubst ELiftSubst EGlobalEnv.
From Equations Require Import Equations.
Set Equations Transparent.
Import MCMonadNotation.
From MetaCoq.Template Require Import utils BasicAst Universes.
From MetaCoq.PCUIC Require Import PCUICPrimitive.
From MetaCoq.Erasure Require Import EAst EAstUtils EInduction ECSubst ELiftSubst EGlobalEnv.
From Equations Require Import Equations.
Set Equations Transparent.
Import MCMonadNotation.
Definition isSome {A} (o : option A) : bool :=
match o with
| Some _ ⇒ true
| None ⇒ false
end.
Section WellScoped.
Context (Σ : global_context).
Definition lookup_constant kn : option constant_body :=
decl <- EGlobalEnv.lookup_env Σ kn;;
match decl with
| ConstantDecl decl ⇒ Some decl
| InductiveDecl mdecl ⇒ None
end.
Definition lookup_minductive kn : option mutual_inductive_body :=
decl <- EGlobalEnv.lookup_env Σ kn;;
match decl with
| ConstantDecl _ ⇒ None
| InductiveDecl mdecl ⇒ ret mdecl
end.
Definition lookup_inductive kn : option (mutual_inductive_body × one_inductive_body) :=
mdecl <- lookup_minductive (inductive_mind kn) ;;
idecl <- nth_error mdecl.(ind_bodies) (inductive_ind kn) ;;
ret (mdecl, idecl).
Definition lookup_constructor kn c : option (mutual_inductive_body × one_inductive_body × (ident × nat)) :=
'(mdecl, idecl) <- lookup_inductive kn ;;
cdecl <- nth_error idecl.(ind_ctors) c ;;
ret (mdecl, idecl, cdecl).
Definition lookup_projection (proj : projection) :=
'(mdecl, idecl) <- lookup_inductive (fst (fst proj)) ;;
pdecl <- List.nth_error idecl.(ind_projs) (snd proj) ;;
ret (mdecl, idecl, pdecl).
Definition declared_constant id : bool :=
isSome (lookup_constant id).
Definition declared_minductive mind :=
isSome (lookup_minductive mind).
Definition declared_inductive ind :=
isSome (lookup_inductive ind).
Definition declared_constructor kn c :=
isSome (lookup_constructor kn c).
Definition declared_projection kn :=
isSome (lookup_projection kn).
Equations well_scoped (n : nat) (t : EAst.term) : bool :=
{ | n, tBox ⇒ true
| n, tRel i := i <? n
| n, tVar _ := false
| n, tEvar m l := well_scoped_terms n l
| _, tConst kn := declared_constant kn
| _, tConstruct kn k := declared_constructor kn k
| n, tLambda na b := well_scoped (S n) b
| n, tLetIn na b b' := well_scoped n b && well_scoped (S n) b'
| n, tApp f u := well_scoped n f && well_scoped n u
| n, tCase (ind, pars) c brs :=
declared_inductive ind && well_scoped n c && well_scoped_brs n brs
| n, tProj p c :=
declared_projection p && well_scoped n c
| n, tFix mfix idx :=
well_scoped_mfix (#|mfix| + n) mfix
| n, tCoFix mfix idx :=
well_scoped_mfix (#|mfix| + n) mfix }
where well_scoped_terms (n : nat) (l : list term) : bool :=
{ | n, [] := true;
| n, (t :: ts) := well_scoped n t && well_scoped_terms n ts }
where well_scoped_brs (n : nat) (brs : list (list name × term)) : bool :=
{ | n, [] := true;
| n, (br :: brs) := well_scoped (#|br.1| + n) br.2 && well_scoped_brs n brs }
where well_scoped_mfix (n : nat) (mfix : mfixpoint term) : bool :=
{ | n, [] := true;
| n, (d :: defs) := well_scoped n d.(dbody) && well_scoped_mfix n defs }.
Lemma well_scoped_closed n t : well_scoped n t → closedn n t.
Proof.
revert n t.
apply (well_scoped_elim
(fun n t e ⇒ e → closedn n t)
(fun n l e ⇒ e → forallb (closedn n) l)
(fun n l e ⇒ e → forallb (fun br ⇒ closedn (#|br.1| + n) (snd br)) l)
(fun n l e ⇒ e → forallb (closedn n ∘ dbody) l)); cbn ⇒ //.
all:intros *; intros; simp well_scoped.
all:rtoProp; intuition eauto.
Qed.
Definition eterm n := { t : EAst.term | well_scoped n t }.
Definition eterm_term {n} (e : eterm n) := proj1_sig e.
Definition well_scoped_eterm {n} (e : eterm n) : well_scoped n (eterm_term e) := proj2_sig e.
End WellScoped.
Arguments eterm_term {Σ n}.
Coercion eterm_term : eterm >-> term.
Coercion well_scoped_eterm : eterm >-> is_true.
Module Constructors.
Section Constructors.
Context {Σ : global_context} {n : nat}.
Obligation Tactic := idtac.
Program Definition tBox : eterm Σ n := tBox.
Next Obligation. cbn. exact eq_refl. Defined.
Program Definition tRel (i : nat) (Hi : i < n) : eterm Σ n := tRel i.
Next Obligation. cbn; intros. eapply Nat.leb_le, Hi. Defined.
Lemma andP (a b : bool) : a → b → a && b.
Proof. destruct a, b; cbn; intros; try exact eq_refl; try discriminate. Defined.
Program Definition tEvar k (l : list (eterm Σ n)) : eterm Σ n := tEvar k (map eterm_term l).
Next Obligation.
cbn; intros.
induction l; cbn. exact eq_refl.
apply andP. exact a. exact IHl.
Defined.
Program Definition tLambda na (b : eterm Σ (S n)) : eterm Σ n := tLambda na b.
Next Obligation.
intros. exact b.
Defined.
Program Definition tLetIn na (b : eterm Σ n) (b' : eterm Σ (S n)) : eterm Σ n := tLetIn na b b'.
Next Obligation.
intros. cbn. apply andP. exact b. exact b'.
Defined.
Lemma ap {A B : Type} (f : A → B) (x y : A) : x = y → f x = f y.
Proof. destruct 1. exact eq_refl. Defined.
Lemma map_app {A B : Type} (f : A → B) (l l' : list A) : map f (l ++ l') = map f l ++ map f l'.
Proof.
induction l; cbn. exact eq_refl.
now apply ap.
Defined.
Program Definition tApp (f : eterm Σ n) (l : list (eterm Σ n)) (napp : ~~ isApp f) (nnil : l ≠ nil) : eterm Σ n :=
mkApps f (map eterm_term l).
Next Obligation.
induction l using rev_ind ⇒ //.
intros Hf Hl.
specialize (IHl Hf).
rewrite map_app EAstUtils.mkApps_app /=.
apply andP.
- destruct l; cbn; [exact f|].
apply IHl. intros Heq. congruence.
- exact x.
Defined.
Program Definition tConst kn (isdecl : declared_constant Σ kn) : eterm Σ n := tConst kn.
Program Definition tConstruct ind k (isdecl : declared_constructor Σ ind k) : eterm Σ n := tConstruct ind k.
Program Definition tCase ci (c : eterm Σ n) (brs : list (∑ args : list name, eterm Σ (#|args| + n)))
(isdecl : declared_inductive Σ ci.1) : eterm Σ n :=
tCase ci c (map (fun br : ∑ args, eterm Σ (#|args| + n) ⇒ (br.π1, proj1_sig br.π2)) brs).
Next Obligation.
intros. cbn.
destruct ci. apply andP.
- apply andP ⇒ //. exact c.
- induction brs; simp well_scoped ⇒ //.
cbn. rewrite IHbrs andb_true_r. exact a.π2.
Qed.
Program Definition tProj p (c : eterm Σ n) (isdecl : declared_projection Σ p) : eterm Σ n :=
tProj p c.
Next Obligation.
now cbn; intros.
Defined.
Next Obligation.
now cbn.
Defined.
Next Obligation.
cbn.
intros. apply andP ⇒ //. exact c.
Defined.
Definition edefs := ∑ mfix : mfixpoint term, well_scoped_mfix Σ (#|mfix| + n) mfix.
Program Definition tFix (mfix : edefs) idx : eterm Σ n := (tFix mfix.π1 idx).
Next Obligation.
cbn; intros. exact mfix.π2.
Defined.
Program Definition tCoFix (mfix : edefs) idx : eterm Σ n := (tCoFix mfix.π1 idx).
Next Obligation.
cbn; intros; exact mfix.π2.
Defined.
End Constructors.
End Constructors.
Definition ebr_br Σ n := (fun br : ∑ args : list name, eterm Σ (#|args| + n) ⇒ (br.π1, proj1_sig br.π2)).
Module View.
Section view.
Context {Σ : global_context} {n : nat}.
Inductive t : eterm Σ n → Set :=
| tBox : t Constructors.tBox
| tRel (i : nat) (le : i < n) : t (Constructors.tRel i le)
| tEvar (k : nat) l : t (Constructors.tEvar k l)
| tLambda na b : t (Constructors.tLambda na b)
| tLetIn na b b' : t (Constructors.tLetIn na b b')
| tApp (f : eterm Σ n) l (napp : ~~ isApp f) (nnil : l ≠ nil) : t (Constructors.tApp f l napp nnil)
| tConst kn (isdecl : declared_constant Σ kn): t (Constructors.tConst kn isdecl)
| tConstruct i k isdecl : t (Constructors.tConstruct i k isdecl)
| tCase ci c brs isdecl : t (Constructors.tCase ci c brs isdecl)
| tProj p c isdecl : t (Constructors.tProj p c isdecl)
| tFix mfix idx : t (Constructors.tFix mfix idx)
| tCoFix mfix idx : t (Constructors.tCoFix mfix idx).
Derive Signature for t.
Equations view_term {e} (v : t e) : term :=
| tBox ⇒ EAst.tBox
| tRel i le ⇒ EAst.tRel i
| tEvar k l ⇒ EAst.tEvar k (map eterm_term l)
| tLambda na b ⇒ EAst.tLambda na b
| tLetIn na b b' ⇒ EAst.tLetIn na b b'
| tApp f l napp nnil ⇒ EAst.mkApps f (map eterm_term l)
| tConst kn isdecl ⇒ EAst.tConst kn
| tConstruct i k isdecl ⇒ EAst.tConstruct i k
| tCase ci c brs isdecl ⇒ EAst.tCase ci c (map (ebr_br Σ n) brs)
| tProj p c isdecl ⇒ EAst.tProj p c
| tFix mfix idx ⇒ EAst.tFix mfix.π1 idx
| tCoFix mfix idx ⇒ EAst.tCoFix mfix.π1 idx.
End view.
Section ViewSizes.
Context {Σ : global_context} {n : nat}.
Lemma view_size_let_def {na} {b : eterm Σ n} {b' : eterm Σ (S n)} : size b < size (Constructors.tLetIn na b b').
Proof. cbn. lia. Qed.
Lemma view_size_let_body {na} {b : eterm Σ n} {b' : eterm Σ (S n)} : size b' < size (Constructors.tLetIn na b b').
Proof. cbn. lia. Qed.
Lemma view_size_lambda {na} {b : eterm Σ (S n)} : size b < size (Constructors.tLambda na b).
Proof. cbn. lia. Qed.
End ViewSizes.
End View.
Lemma well_scoped_irr {Σ n t} (ws ws' : well_scoped Σ n t) : ws = ws'.
Proof. apply uip. Defined.
Section view.
Context {Σ : global_context} {n : nat}.
Equations? ws_list (l : list term) (ws : well_scoped_terms Σ n l) : list (eterm Σ n) :=
| [], _ ⇒ []
| t :: ts, ws ⇒ (exist _ t _) :: ws_list ts _.
Proof.
all:move/andP: ws ⇒ [] //.
Qed.
Lemma ws_list_eq l ws : map eterm_term (ws_list l ws) = l.
Proof. funelim (ws_list l ws); cbn; auto. now rewrite H. Qed.
Equations? ws_brs (l : list (list name × term)) (ws : well_scoped_brs Σ n l) : list (∑ args, eterm Σ (#|args| + n)) :=
| [], _ ⇒ []
| t :: ts, ws ⇒ (t.1; exist _ t.2 _) :: ws_brs ts _.
Proof.
all:move/andP: ws ⇒ [] //.
Qed.
Lemma ws_brs_eq l ws : map (ebr_br Σ n) (ws_brs l ws) = l.
Proof. funelim (ws_brs l ws); cbn; auto. rewrite H. destruct t ⇒ //. Qed.
Lemma andb_left {a b} : a && b → a.
Proof.
move/andP=>[] //.
Qed.
Lemma andb_right {a b} : a && b → b.
Proof.
move/andP=>[] //.
Qed.
Lemma well_scoped_terms_forallb {l} : well_scoped_terms Σ n l = forallb (well_scoped Σ n) l.
Proof.
induction l; simp well_scoped; auto.
now rewrite IHl.
Qed.
Lemma well_scoped_mkApps {f l} : well_scoped Σ n (mkApps f l) → well_scoped Σ n f && well_scoped_terms Σ n l.
Proof.
induction l using rev_ind; cbn; auto.
- now intros →.
- rewrite mkApps_app /=.
move/andP⇒ [] wfl wx.
move/andP: (IHl wfl) ⇒ [] ⇒ → wfnl /=.
now rewrite well_scoped_terms_forallb forallb_app -well_scoped_terms_forallb /= wfnl wx.
Qed.
Notation " ( x ⧆ y ) " := (exist _ x y).
Definition view (x : eterm Σ n) : View.t x.
Proof.
destruct x as [t ws].
set (t' := t).
destruct t;
try solve [evar (ws' : well_scoped Σ n t' = true); rewrite (well_scoped_irr ws ws'); subst ws' t';
unshelve econstructor; eauto].
- evar (ws' : well_scoped Σ n t' = true); rewrite (well_scoped_irr ws ws'); subst ws' t'.
unshelve econstructor. now eapply Nat.leb_le.
- cbn in ws; discriminate.
- pose proof (ws_list_eq l ws). set(l' := ws_list l ws) in ×. clearbody l'.
subst t'.
revert ws. destruct H.
intros ws. set (t' := tEvar _ _).
evar (ws' : well_scoped Σ n t' = true); rewrite (well_scoped_irr ws ws'); subst ws' t'.
econstructor.
- cbn in ws.
change t with (eterm_term (exist _ t ws)) in t'.
evar (ws' : well_scoped Σ n t' = true); rewrite (well_scoped_irr ws ws'); subst ws' t'.
econstructor.
- change t2 with (eterm_term (t2 ⧆ andb_right ws)) in t'.
change t1 with (eterm_term (t1 ⧆ andb_left ws)) in t'.
revert t'.
set (prf := andb_left ws).
set (prf' := andb_right _). clearbody prf prf'.
intros t'.
evar (ws' : well_scoped Σ n t' = true).
rewrite (well_scoped_irr ws ws'); subst ws' t'.
econstructor.
- destruct (decompose_app (tApp t1 t2)) eqn:da.
move: ws. revert t'.
rewrite (decompose_app_inv da).
intros t' ws.
move: (decompose_app_notApp _ _ _ da).
move: (EInduction.decompose_app_app _ _ _ _ da).
clear da t1 t2.
pose proof (wfa := well_scoped_mkApps ws).
pose proof (ws_list_eq l (andb_right wfa)).
set(l'' := ws_list l _) in ×. clearbody l''.
move: ws. revert t'.
destruct H.
intros t'.
change t with (eterm_term (t ⧆ andb_left wfa)) in t'.
set (prfa := andb_left wfa) in ×. clearbody prfa.
intros ws hl ht.
evar (ws' : well_scoped Σ n t' = true).
rewrite (well_scoped_irr ws ws'); subst ws' t'.
unshelve econstructor. exact ht.
intros hl'. subst l''. cbn in hl. congruence.
- destruct p as [ind k].
change t with (eterm_term (t ⧆ andb_right (andb_left ws))) in t'.
set (prf1 := andb_right _) in t'. clearbody prf1.
pose proof (ws_brs_eq _ (andb_right ws)).
set (prf2 := andb_right _) in ×. clearbody prf2.
revert t' ws. destruct H.
intros t' ws.
evar (ws' : well_scoped Σ n t' = true).
rewrite (well_scoped_irr ws ws'); subst ws' t'.
unshelve econstructor.
cbn. apply (andb_left (andb_left ws)).
- change t with (eterm_term (t ⧆ andb_right ws)) in t'.
set (prf := andb_right ws) in ×. clearbody prf.
evar (ws' : well_scoped Σ n t' = true).
rewrite (well_scoped_irr ws ws'); subst ws' t'.
unshelve econstructor. apply (andb_left ws).
- change m with (((m; ws) : Constructors.edefs).π1) in t'.
evar (ws' : well_scoped Σ n t' = true).
rewrite (well_scoped_irr ws ws'); subst ws' t'.
econstructor.
- change m with (((m; ws) : Constructors.edefs).π1) in t'.
evar (ws' : well_scoped Σ n t' = true).
rewrite (well_scoped_irr ws ws'); subst ws' t'.
econstructor.
Defined.
Lemma view_term (t : eterm Σ n) (v : View.t t) : View.view_term v = t.
Proof.
induction v; cbn; reflexivity.
Qed.
Lemma view_view_term (t : eterm Σ n) : View.view_term (view t) = t.
Proof. apply view_term. Qed.
Lemma view_view_size (t : eterm Σ n) : size (View.view_term (view t)) = size t.
Proof. now rewrite view_view_term. Qed.
End view.
From Coq Require Import Relation_Definitions.
Section test_view.
Context (Σ : global_context).
Import View.
Definition eterm_size : relation (∑ n, eterm Σ n) :=
MR lt (fun x : ∑ n, eterm Σ n ⇒ size x.π2).
Instance wf_size : WellFounded eterm_size.
Proof. unfold eterm_size. tc. Defined.
Obligation Tactic := idtac.
#[derive(eliminator=no)]
Equations? test_view (n : nat) (t : eterm Σ n) : bool
by wf (n; t) eterm_size :=
test_view n t with view t := {
| tBox ⇒ true
| tRel i lei ⇒ false
| tApp f args notapp notnil ⇒ test_view n f
| _ ⇒ false
}.
Proof.
do 2 red. cbn. rewrite size_mkApps.
destruct args; cbn; try congruence. lia.
Qed.
End test_view.